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Abstract

A real-time recurrent learning algorithm was applied to a five class radar target

identification problem. The wideband radar was assumed to measure both kinematic

(tracking information expressed as estimated aspect angles) and high range resolution

data from a single, isolated aircraft. The aspect angles (azimuth and elevation) of the

aircraft relative to the radar were assumed to be constantly changing. This created

temporal sequences of high range resolution radar signatures that changed as the aspect

angles changed. These sequences were used as input features to a recurrent neural

network for three radar target identification test cases. The first test case demonstrated

the feasibility of using recurrent neural networks for radar target identification. The

second test case demonstrated the relationship between sequence length and target

recognition accuracy. For the third test case, the recurrent net achieved 96% test set

accuracy under the following conditions: 5 aircraft classes, azimuth range between 600

and 900, elevation range between +50 and -5, 10 signature granularity, and signatures

corrupted by 5 dBsm scintillation noise.
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RECURRENT NEURAL NETWORKS

FOR RADAR TARGET IDENTIFICATION

I. Introduction

1.1 Background

Aircraft surveillance is an important Air Force mission. This mission can be

divided into three functions: detection, tracking, and identification. These functions

must often be performed at long ranges and under adverse weather conditions, so radar

is an obvious sensor choice. Current radar systems can detect and track aircraft under a

wide range of operational conditions. This thesis focuses on the identification function.

1.1.1 Identificadon Approaches. Radar target identification is an active

research area, with many different available approaches [Cohen, 1991:233-2421. In

each approach, identification generally proceeds in four steps: sensor measurement,

signal processing, feature extraction, and decision processing [Cohen, 1991:241]. For

sensor measurement, a surveillance radar emits a signal towards a target and measures

the reflected radar signature. For signal processing, a radar receiver converts antenna

measurements into a large set of parameters to represent the radar signature. After

signal processing, the radar signature may be represented by hundreds or even

thousands of parameters. For feature extraction, an algorithm (in hardware or software)

performs data reduction or data compression. After feature extraction, the radar

signature is typically represented by tens of parameters or less. For decision

processing, an algorithm (usually in software) identifies the target based on information

contained within a single radar signature or within multiple radar signatures.

This thesis focuses on developing a decision processing algorithm for radar

target identification. Stealth technology, impulse radar, bistatic radar, synthetic
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aperture Trode radar, and man-in-the-loop systems are not discussed. Following

sectious assume that the sensor measurement and signal processing steps have already

been performed.

1.1.2 Radar Signature Parameters. A radar signature can be described by

three types of parameters: frequency, polarization, and amplitude [Trebits, 1984:27-

311. Amplitude values are determined by interactions between a radar signal and a

target. These interactions are dependent on the frequency and polarization parameters

as set by the radar. Amplitudes are often presented as a radar cross section, measured

in decibels relative to a hypothetical one square meter target (dBsm) viewed under the

same operational conditions (transmit power, antenna gain, range, etc.) [Stimson,

1983:115, 170-174]. A radar can measure amplitudes at a single frequency (for

narrowband radar) or over a range of frequencies (for wideband radar). Antenna

polarizations can be vertical, horizontal, circular left, circular right, or elliptical.

Different polarizations may be used during the transmit and receive cycles. If a radar

transmits two signals (using orthogonal polarizations) and receives each signal twice

(using the same orthogonal polarizations), then the resulting radar signature is fully

polarized. A fully polarized radar signature contains all available radar information

about a target [Trebits, 1984:30].

1.1.3 Polarization Diverse Radar Signature. For most radar target

identification cases, it is not necessary to measure a fully polarized radar signature. If a

radar transmits a circularly polarized signal and receives using orthogonal linear

polarizations, then the resulting radar signature is polarization diverse [Sacchini,

1992a0127]. A polarization diverse radar signature is a compressed form of a fully

polarized signature, with some loss of information. This information loss is negligible

as long as the target does not respond preferentially to one circular polarization and not

the other [Sacchini, 1992:127]. This thesis will assume all radar signatures are

polarization diverse (using left circular transmit polarization) unless specifically noted

otherwi.
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1.1.4 Narrowband Radar. For narrowband radar, the measured amplitudes are

vector-sum values for the entire target. A polarization diverse, narrowband radar

signature contains two parameters: the LV amplitude for the left circular transmit -

vertical receive polarization, and the LH amplitude for the left circular transmit -

horizontal receive polarization.

1.1.5 WidebandRadar. For wideband radar, amplitude values are measured at

very precise, discrete times to gain additional information about a target. Since radar

waves travel at the speed of light, measurements over discrete time intervals correspond

to discrete range intervals (or range bins) across the target (Figure 1-1). Amplitude

values are measured for each range bin as if it were an individual radar target. A

polarization diverse, wideband (or high range resolution) radar signature is a matrix

containing LV and LH amplitudes for each range bin across the target.

Radar Beam
Antenna

Range Bins

Figure 1-1: Range Bins for Wideband Radar [Mensa, 1991:6]

1.1.6 Aspect Angle Dependence. A radar signature measures the radar

reflective properties of an aircraft. However, these reflective properties change as the

aircreIf is viewed from different aspect angles (azimuth and elevation) [Trebits,

1984:44]. For this thesis, azimuth and elevation are measured in the aircraft frame of

reference from the aircraft towards a radar (Figure 1-2). A given aircraft viewed at

given aspect angles will produce a particular radar signature (Figures 1-2 and 1-3). If a

given signature is unique to a particular aircraft class, then a decision processing
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algorithm can identify that aircraft based on the information contained within a single

radar signature. However, this "unique signatures" condition is not often encountered

with real radar targets. Radar signatures from different aircraft are sometimes

essentially identical at the same or different aspect angles [Libby, 1992a:Ch 1, 6-8].

When this happens, additional information must be measured before an aircraft can be

identified.

7 • Elevation

. ,Azimuth

Figure 1-2: Aspect Angle Sequence [Libby, 1992a:Ch 1, 9]

Amplitude I Aspect Angle

SNum ber From

Range Bins 8 Figure 1-2

Figure 1-3: Sequence of Wideband Radar Signatures

1.1.7 Aspect Angle Sequences. Existing radars can provide this additional

information [Libby, 1992a:Ch 1, 6-8]. Since an aircraft in flight is constantly in

motion, a radar can measure sequences of radar signatures as the aspect angles change
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(Figures 1-2 and 1-3). A sequence of radar signatures is much more likely to be unique

than its component signatures. There are an infinite number of possible aspect angle

sequences, so a priori aspect angle estimates are needed to limit the number of

candidate sequences. A radar can generate these aspect angle estimates by using

kinematic information from aircraft position and velocity measurements. The aspect

angle estimates and temporal sequences of radar signatures are additional features that

can be used to discriminate between aircraft classes.

1.2 Problem

The goal of this thesis is to identify various types of aircraft using sequences of

high range resolution radar signatures.

1.3 Summary of Current Knowledge

Only a few radar target identification algorithms have been developed that use

sequences of radar signatures (temporal sequences based on target aspect angle

changes). These algorithms include an optical neural network [Farhat, 1989:670-680],

a quadratic classifier, a backpropagation neural network, and a counterpropagation

neural network (the last three by [Brown and others, 1990:217-224]). However, there

are other algorithms from classical sequence analysis disciplines that have not yet been

used for radar target identification [Libby, 1992b]. These algorithms include hidden

Markov models and recurrent neural networks. Since hidden Markov models [DeWitt,

1992:Ch 1, 1] and other stochastic estimation techniques [Libby, 1992a:Ch 1, 11] for

radar target identification are currently under research here at AFIT, this thesis focuses

on recurrent neural networks.

1.4 Assumptions

- The radar operates at 10 GHz frequency with a 1 GHz bandwidth.

- Radar signatures are measured in the time domain from a single, isolated

aircraft.

- The aircraft aspect angles are changing at a constant rate.
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- Radar signatures are strong enough to be clearly seen above thermal noise.

- Radar signatures are corrupted only by scintillation effects.

1.5 Scope

This thesis focuses on solving a five class radar target identification problem by

using recurrent neural networks [Lindsey, 1991:1-3] [Williams and Zipser, 1989:270-

280].

1.6 Approach

Radar target identification using recurrent neural networks was performed in

three steps. First, the RCS_TOOLBOX computer program generated a database of high

range resolution radar signatures (provided by MIT Lincoln Laboratories Group 93

[Bramley and others, 1991]). Second, these signatures were processed into sequences

of feature values for use during recurrent neural network training and testing. Third, a

recurrent neural network computer program (implementing a real time recurrent

learning algorithm) was trained to recognize sequences of radar signatures from

different aircraft classes [Lindsey, 1991:58-74]. Radar target identification accuracy

was verified against an independent set of RCS_TOOLBOX test sequences.

1.7 Organization

The remaining sections of this thesis are organized into four chapters. Chapter

II discusses several important radar concepts and summarizes a few decision processing

algorithms that can use sequences of radar signatures for radar target identification.

Chapter III presents the procedures for generating radar signatures, adding noise,

extracting feature values, training a recurrent neural network, and testing for

identification accuracy. Chapter IV gives the experimental results for three test cases.

Chapter V gives conclusions and recommendations for future research.

1-6



AI. Literature Review

2.1 Introduction

This chapter discusses several important radar concepts that apply to this thesis:

scattering centers, scintillation, narrowband radar, wideband range resolution, wideband

range extent, thermal noise, and aspect angle estimates. This chapter also summarizes a

few decision processing algorithms that can use sequences of radar signatures for radar

target identification. If an algorithm has been used previously for radar target

identification, the associated data files, algorithm results, and limitations are discussed.

2.2 Radar Concepts

A radar signature is created by interactions between a radar signal and a target.

These interactions are a function of geometry between the radar and target, and

reflectivity properties of the target at the radar signal frequency and polarization

[Barton, 1988:108]. For simple targets (spheres, plates, cylinders, cones, and comer

reflectors), radar signatures can be analytically or approximately computed [Trebits,

1984:31-43]. For complex targets such as aircraft, radar signatures must be either

physically measured or numerically estimated [Barton, 1988:109]. This thesis uses the

RCSTOOLBOX computer program to numerically estimate radar signatures

[Bramley and others, 1991 ].

2.2.1 Scattering Centers. A complex target can be viewed as a set of small,

simple targets (scattering centers) [Trebits, 1984:44]. The radar signature for each

scattering center can be computed, so the radar signature for a complex target can be

numerically estimated by coherently summing the individual radar signatures from the

component scattering centers. This coherent sum is based on the addition and

cancellation of scattering center amplitudes as adjusted by each scattering center's

phase. Each scattering center can have different reflectivity properties, depending on

materials used for that part of the target. Particular scattering centers may be partially

or completely obscured when the target is viewed from certain aspect angles: these
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effects must be accounted for using three-dimensional geometry. Interference effects

(caused by multiple radar signal bounces between scattering centers) may be included

for accuracy or ignored for computational speed: RCSJTOOLBOX ignores

interference effects.

2.2.2 Scintillation. Scintillation is a problem for radar target identification. It

causes a radar signature to vary rapidly with time and with target aspect angle. It is

caused by scattering center amplitude and phase variations and by interactions between

returns from individual scattering centers [Stimson, 1983:192-193]. Amplitude and

phase variations can happen for a variety of reasons: control surface motion, rotating

propellers, structural flexing, vibrations, atmospheric effects, etc. If a scattering center

is rotated by a small amount, then its amplitude will change. If a scattering center

moves along the line of sight between the aircraft and radar, then its phase will change.

Slight motions are sufficient to cause large phase changes: a 10 GHz radar operates at a

3 cm wavelength, and a quarter wavelength shift will change a scattering center's phase

by 1800 [Stimson, 1983:86,192-193]. As the amplitude and phase values change, the

total amplitude for the target will change. For this thesis, scintillation effects were

included as the primary source of radar system noise. RCSTOOLBOX computed

noise-free radar signatures, so scintillation effects had to be added using a separate

computer program (FORMATRCST, as described in Section 3.3.3).

2.2.3 Narrowband Radar. For narrowband radar, all scattering center

signatures from a complex target are coherently summed into a single "range bin". For

this reason, scintillation makes narrowband signatures fluctuate rapidly with time and

aspect angle. This also makes narrowband signatures a poor feature set for aircraft

identification.

2.2.4 Wideband Radar Range Resolution. For wideband radar, range

resolution is a measure of how closely two targets may be placed (along the line of

sight between the radar and the targets) before the two radar signatures begin to
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overlap. It is determined by the radar signal bandwidth [Mensa, 1991:9]. For complex

targets, the range resolution parameter effectively divides the object into range "bins".

The radar signatures from scattering centers within the same range bin will be

coherently summed into a single signature for that range bin. This makes wideband

radar resistant to scintillation effects [Skolnik, 1980:181-182]. Scintillation still causes

random fluctuations in the scattering center radar signatures, but the effects are

contained within individual ranges bins.

2.2.5 Wideband Radar Range Extent. A polarization diverse, wideband radar

signature is a matrix containing LV and LH amplitudes for each range bin within the

range extent. Range extent is the window of ranges over which a wideband radar will

measure target information. A complete discussion of the factors affecting range extent

is beyond the scope of this thesis. In any case, range extent must be large enough to

completely cover a target. For most aircraft, a range extent on the order of tens of

meters is sufficient.

2.2.6 Thermal Noise. Thermal noise is present in the output of every radar

receiver. The total noise power level can be expressed as the finite sum of noise

contributions from the atmospheric background, antenna, transmission lines, and

receiver [Stimson, 1983:169]. For wideband radar, the finite noise power level causes

each range bin to contain a finite amount of noise energy. This noise energy (in joules)

can be expressed as an equivalent noise amplitude (in dBsm) by figuring out how much

energy would be measured from a hypothetical one square meter target (for a given

radar under specific operating conditions) [Barton, 1988:16]. For a target scattering

center to be detected, the energy in that range bin due to the scattering center must be

greater than the energy due to noise. Noise effects can be filtered out of a radar

signature by setting an amplitude threshold value: anything below the threshold is

considered to be noise and anything above it is part of a target [Stimson, 1983:175].

For this thesis, the amplitude threshold was assumed to be high enough to filter out all

thermal noise effects.
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2.2.7 Aspect Angle Estimates. Tracking information (position and velocity)

can be used to estimate aspect angles by assuming an aircraft is constrained to

aerody•,amic flight. Basic geometry can provide these estimates by assuming the

aircraft is in straight, level, upright, zero angle-of-attack flight. Advanced techniques

(Kalman filters and coordinate transformations) are required to handle the more general

cases [Bogler, 1990:147-199] [Libby, 1992a:Ch 3, 13-21].

Two types of aspect angle uncertainty are required to model a radar target

tracking algorithm [Libby, 1992b]. First, there is an overall "bias" uncertainty that

causes an offset between the target actual and estimated aspect angles. It is caused

mainly by uncertainty in the aircraft's aspect angle relative to its velocity vector

(sideslip angle, angle of attack, etc.). The offset error affects all aspect angle estimates

for a given target and will persist over a sequence of radar measurements. The offset

error can have a standard deviation of as much as a few degrees: this accounts for most

of the uncertainty within a tracking algorithm [Libby, 1992b]. The second type of

uncertainty causes small, random deviations from the target's apparent aspect

trajectory. It is caused mainly by high frequency aerodynamic effects (aircraft control

response, wind buffeting, etc.). For a typical sequence of wideband radar signatures,

these deviations are uncorrelated in time [Libby, 1992b]. In stable flight, these random

fluctuations are expected to have a standard deviation of less than one degree [Libby,

1992b].

For current radar systems, aircraft azimuth and elevation angles can be

estimated within ± 50 (including both types of uncertainty) [Libby, 1992b]. A decision

processing algorithm should take advantage of every possible source of information,

therefore this thesis uses the aspect angle estimates as feature values.

2.3 Decision Processing Algorithms

This section describes several decision processing algorithms that can use

sequences of radar signatures for radar target identification. If the algorithm has been

used previously for radar target identification, the associated data files, algorithm

results. and limitations are discussed.
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2.3.1 Recurrent Neural Network Williams and Zipser developed a recurrent

neural network algorithm that can learn supervised temporal tasks [Williams and

Zipser, 1989:270-280]. This algorithm has been used previously for function prediction

[Lindsey, 1991:2] and word recognition [Robinson, 1992], but not for radar target

identification. Similar to other neural nets, a recurrent net multiplies an input vector by

a weight matrix to get an output vector (a computationally simple operation). For radar

target identification, the input vector is a set of numbers representing a radar signature

(the amplitudes from a polarization diverse signature). Aspect angle estimates are

included as separate feature values in the input vector. The weight matrix is trained

using labeled input vectors and gradient descent: this process minimizes the mean-

squared error between the desired and actual output vectors. The output vector includes

both output nodes and hidden nodes. The index of the maximum value within the

output nodes identifies the target.

To process temporal sequences, the output vector for a given time step is fed

back as additional inputs for the next time step. The input vector includes the aspect

angles and radar signature values for the current iteration and the output vector as

calculated during the previous iteration. Output vectors are computed for each time

step.

Recurrent nets appear to be ideally suited for processing sequences of radar

signatures for two reasons. First, sequences may contain an arbitrary number of

signatures. Second, a recurrent net will retain temporal information for fixed or

indefinite periods of time as required. The biggest limitation for recurrent nets is

computational speed during training (but not testing) [Lindsey, 1991:9-10].

2.3.2 Farhat: Optical Neural Network Farhat developed an optical neural

network algorithm (based on a feed-forward net, not a recurrent net) that uses

sequences of wideband radar signatures to identify airborne targets [Farhat, 1989:670-

6801. Similar to other neural nets, it multiplies an input vector by a weight matrix to

get an output vector. However, this algorithm performs all of its operations optically.

The input vector is a sinogram, which is a Cartesian plot of the radar intensities of
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scattering centers on a target versus target aspect angle (similar to Figure 1-3). Each

sinogram is converted into a 2-dimensional binary image representing an entire radar

sequence. The weight matrix is computed (not trained) by converting a complete set of

2-dimensional training images into a 4-dimensional connectivity matrix. The

connectivity matrix is partitioned back into a 2-dimensional representation for optical

storage on a hologram. The output vector is an optical text label that identifies the

target.

2.3.2.1 Farhat: Data. Training and test sequences were measured for

three target classes: a B-52, an AWACS, and a Space Shuttle. Real data sets were

obtained by placing three physical models on a turntable in a radar test range (16 GHz

to 17 GHz, wideband). Fully polarized signatures were measured for each target.

Aspect angle changes were limited to azimuth only. Training sequences were measured

for each azimuth quadrant: these were converted into sinogranis and digitized into 32

by 32 pixel binary images. Test sequences were generated by windowing the azimuth

axis of the binary images. Zero padding filled out the rest of the test images.

2.3.2.2 Farhat: Results. Target identification was accurate for test

sequences with 180 or more of azimuth angle changes. Accuracy losses were

noticeable for test sequences with 90 azimuth angle changes. These results apply to a

three class identification problem with azimuth angles known exactly. Note: Farhat

did not explain how the azimuth angle measurements would be obtained.

2.3.2.3 Farhat: Limitations. Data storage is the biggest limitation for

the Farhat algorithm. The optical storage algorithm can retain approximately 37 images

(each 32 by 32 pixels) without degradation [Farhat, 1989:675]. Each image stores

information for a 900 azimuth angle change for a single target. Therefore, the Farhat

algorithm can be "saturated" by measuring the radar signatures from three targets for a

full 3600 azimuth rotation at three discrete elevation angles (36 images total). The

Farhat algorithm can be modified to store more images, but there will always be an

upper limit for a given system: this is less than optimal because a radar target
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identification system should be able to handle many targets and a potentially infinite

number of aspect angle sequences [Cohen, 1991:238].

2.3.3 Brown: Quadratic Classifier, Backpropagation Neural Network, and

Counterpropagation Neural Network Brown developed three algorithms that use

fixed-length sequences of narrowband radar amplitudes to identify three classes of

ground targets [Brown and others, 1990:217-224].

The first algorithm is a quadratic (Bayesian-like) classifier. It computes the

probability that a particular target is present given that a particular radar sequence has

been received. This algorithm measures the Mahalanobis distance between an

unknown sequence (a vector of radar amplitudes) and all known sequences. The

minimum distance identifies the target.

The second algorithm is a multi-layer perceptron neural network. It multiplies

an input vector by two weight matrices (two layers of hidden nodes) to get an output

vector. The input vector is a set of numbers that represent the amplitudes of a radar

signature. The weight matrices are trained using labeled input vectors and gradient

descent: this process minimizes the mean-squared error between the desired and actual

output vectors. The index of the maximum value within the output vector identifies the

target.

The third algorithm is a counterpropagation neural network that combines a

Kohonen map and a Grossberg outstar net. This algorithm is trained with methods

similar to those used for a backpropagation net. After training, the Kohonen map takes

an input vector and maps it to an intermediate feature space of discrete nodes. These

nodes represent the discrete probability density function of all input vectors. The

Grossberg outstar net approximates a look-up table and labels each Kohonen node:

these labels identify the target.

2.3.3.1 Brown: Data. Training and test sequences were measured for

three classes: a tank, a truck, and an armored personnel carrier. Real data sets were

obtained by placing three physical models on a turntable in a radar test range (35 GHz,
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narrowband). Fully polarized signatures were measured for each target. Aspect angle

changes were limited to azimuth only. Radar sequences were represented by a vector of

8 feature values (for the quadratic classifier) or 21 feature values (for the neural

networks): Brown did not specifically identify what these values represented. A total

of 2932 sequences were measured: half for training and half for testing.

2.3.3.2 Brown: Results. The average quadratic classifier accuracy was

73% for a three class, rotation-invariant problem. The average backpropagation net

accuracy was 74%. The average counterpropagation net accuracy was 70%. The

neural network results apply to a four class (three targets plus "unidentified"), rotation-

invariant problem. Brown identified the backpropagation net as having the best

potential.

2.3.3.3 Brown: Limitations. The fixed sequence length is the biggest

limitation for the Brown backpropagation algorithm. The sequence length is defined by

the input vector size, so the training and testing vectors for a given net architecture must

be the same length. This means the appropriate sequence length (to maximize radar

target identification accuracy) for a backpropagation net can be found only by trial and

error during training. Recurrent neural networks are more efficient for sequence length

analysis: a recurrent net outputs the estimated target identity at each time step during a

sequence [Williams and Zipser, 1989:271].

2.3.4 Hidden Markov Models. Hidden Markov models have been used in the

past for isolated word recognition [Parsons, 1987:307-317] and have only recently

been proposed for radar target identification [Libby, 1992a:Ch 3, 49-50]. For aircraft

identification, a hidden Markov model assumes a system (aircraft) must be in one of a

finite number of states (aspect angles) and that each state has a finite number of

possible outputs (radar signatures) [DeWitt, 1992:Ch 3, 9-11]. The system transitions

through a sequence of states and each state emits an output. The transitions and outputs

are assumed to be random with defined probabilities. Therefore, a sequence of
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measured outputs can be analyzed to see if they match the possible outputs from a

given system. The best possible match identifies the system.

2.4 Summary

A recurrent neural network has two key advantages over the radar target

identification algorithms used in the past. First, the memory storage capacity (for the

number of targets and training sequences) is not arbitrarily limited, unlike an optical

neural network. Second, data sequences of arbitrary length can be handled by the same

recurrent neural network architecture, unlike a backpropagation neural network. Since

hidden Markov models [DeWitt, 1992:Ch 1, 1] and other stochastic estimation

techniques [Libby, 1992a:Ch 1, 11] for radar target identification are under research

here at ART, this thesis focuses on recurrent neural networks.
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III Methodology

3.1 Introduction

Radar target identification using recurrent neural networks was performed in

three steps. First, the RCSTOOLBOX computer program generated a database of high

range resolution radar signatures [Bramley and others, 1991]. Second, these signatures

were processed into sequences of feature values for use during recurrent neural network

training and testing. Third, a recurrent neural network computer program

(implementing a real time recurrent learning algorithm) was trained to recognize

sequences of radar signatures from five different aircraft classes [Lindsey, 1991:58-

74]. Radar target identification accuracy was verified against an independent set of

RCSTOOLBOX test sequences.

3.2 Radar Signature Generation

The RCSTOOLBOX computer program is actually a collection of over a dozen

separate programs. Three of these programs are required to generate high range

resolution radar signatures of aircraft: SCAMP, SETUPPTD, and PTDTABLE. These

programs, in software, put an aircraft model on a turntable in a radar test range

[Bramley, 1991:Ch 2, 1-8]. This is the same experimental setup as for a real radar test

range.

3.2.1 Aircraft Models. SCAMP creates a con puter file to represent the three

dimensional geometry of an aircraft (Figure 3-1) [Bramley, 1991:Ch 3, 1-8]. Aircraft

models of a MiG-21 and F-4 were created and verified here at AFIT [Libby, 1992b].

Aircraft models of an F-15, F-16, and F-18 came with the RCSTOOLBOX package.

These last three models have not been verified, but they can be used to produce

detemnistic radar signatures. None of the five SCAMP models were validated against

real radar signatures.
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Figure 3-1: SCAMP Models of a MiG-21, F-4, F-15, F-16, and F-18
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3.2.2 Radar and Geometry Parameters. SETUPPTD defines the operating

conditions under which wideband radar signatures are generated [Bramley, 1991:Ch 8,

1-71. The radar sensor is defined by setting polarization, frequency, bandwidth, range

resolution, and range extent parameters. The aircraft orientation relative to the radar is

controlled by defining various turntable motion parameters. The aircraft is placed on

the turntable at defined roll and pitch angles. The turntable itself may be rotated and

tilted as required. In effect, these orientation parameters define the aircraft aspect

angles. The coordinate transformation between the orientation parameters and aspect

angles can be simplified by setting the roll and pitch angles to zero. This allows the tilt

angle to control elevation and turntable rotation to control azimuth. Once the initial

aircraft orientation is fixed, the turntable may be rotated through a series of discrete

angular steps. This allows PTDTABLE to generate multiple radar signatures as the

aspect angles change.

3.2.3 Radar Signature Estimation. PTDTABLE uses information contained in

the SCAMP and SETUPPTD files to generate high range resolution radar signatures

[Bramley, 1991:Ch 9, 1-3]. This program uses the physical theory of diffraction to

estimate signatures and assumes that the aircraft dimensions are large compared to the

radar wavelength. PTDTABLE estimates radar signatures (for a specific SCAMP

model) at a number of discrete aspect angles (as defined in the SETUPPTD file). For

this thesis, wideband radar signatures were generated in the time domain for the

following conditions:

- 10 GHz radar center frequency

- I GHz bandwidth

- 0.15 meter range resolution (defined by the bandwidth [Mensa, 1991:9])

- 30 meter range extent (producing 200 range bins, each 0.15 meters across)

- 5 aircraft classes: MiG-21, F-4, F-15, F-16, and F-18

- Primary aspect angles: -50 to +50 elevation in 1V steps, with 10 azimuth

granularity from 0* to 1800 (for training data)
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- Offset aspect angles: -4.5° to +4.50 elevation in 1P steps and also at 0(

elevation, with 1P azimuth granularity from 0.50 to 179.50 (for independent test data)

- Polarization diverse radar signatures: amplitudes measured at LV and LH

polarizations (left circular transmit, vertical and horizontal receive)

Each radar signature took about 5 seconds to compute on a Silicon Graphics 4D

workstation. Figure 3-2 shows part of an RCS_TOOLBOX file. Figure 3-3 plots the

resulting radar signature.

wbtable
Recurrent Neural Networks for Radar Target Identification
LV polarization, elevation 0.0, azimuth 0.0 start
jets/mig2l .scamp

1 :number of frequencies
10000.0000
4 1 :transmitter and receiver polarizations

0.0000 0.0000 0.0000 :roll,pitch and tilt
0 :no. of pts to skip between shadowing

0.0000 1.0000 :thet0 and delta-theta
0.0000 0.0000 :psitO and delta-psit
0.0000 0.0000 :psir0 and delta-psir

181 :number of pulses
0.1500 :range bin size

1000.0000 :band width
200 :range wdth/srsc

3 :imode
0.000

14335 33969 14324 15758 14383 33667 14370 15508
14390 33379 14413 15083 14425 33212 14449 14777
14461 32731 14479 14603 14452 32449 14637 14118
14483 32153 14564 13963 14586 31802 14604 13520
14632 31620 14646 13254 14678 31157 14690 12989
14735 30868 14739 12701 14781 30426 14795 12460
14829 30137 14864 12132 14874 29901 14914 11706
14937 29563 14994 11467 14999 29208 15043 11109
15072 28900 15112 10813 15151 28571 15182 10475
15224 28262 15265 10126 15314 27966 15340 9838
15401 27648 15444 9471 15493 27344 15543 9161
15600 26991 15656 8845 15714 26679 15776 8513

(first radar signature continues, followed by other signatures)

Figure 3-2: Example portion of an RCSJTOOLBOX data file, showing the LV
polarization data for a MiG-21 at 00 elevation, 00 azimuth. The array of
numbers contains the amplitude and phase values for each range bin
[Bramley, 1991:Ch 9, 1-3]. The amplitude and phase values are
transformed for integer representation [Branley, 1991:Ch A, 13].
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Figure 3-3: Example of a polarization diverse radar signature, showing the LV and
LH polarization responses of a MiG-21 at 0* elevation, 0* azimuth
[Bramley and others, 1991:Ch A, 11-14]. The line at -30 dBsm shows
the thermal noise threshold.

3.3 Feature Extraction

This section describes the FORMAT_RCST data processing computer program.

For the program source code, see Appendix B. FORMATRCST reads in the raw

RCSTOOLBOX signature data files and performs a number of operations. Each of

these operations is described in turn:

- Select a starting aspect angle for a sequence of radar signatures.

- Produce an azimuth estimate by adding noise to the true azimuth value.

- Add scintillation noise to each of the amplitude values in a signature.

- Apply a lower threshold limit to all amplitude values.

- Locate the target within the range extent and estimate target width.

- Divide the target into range bin intervals and downsample to a fixed number of

peak range bins.

- Statistically normalize feature values to improve neural network training.

3.3.1 Aspect Angle Sequences. For training data files, the sequence starting

aspect angles were randomly generated (selected one at a time without replacement).

This improved the chances that the recurrent neural network algorithm would converge

to a global minimum mean squared error solution instead of a local minimum. Multiple
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data files were used for training and the resulting test accuracies were compared.

Training data files were generated only from the primary aspect angles. Test data files

were generated only from the offset aspect angles (ref: Section 3.2.3).

For all data files, sequences were generated by varying only the aircraft

azimuth. Elevation was constant for any one sequence, but could vary between

sequences. Within each sequence, the azimuth (truth) angle increased by 1P per time

step for a total of 10 time steps (100. Reverse direction (decreasing azimuth)

sequences were not included. The 10* sequence length was chosen to be the upper limit

for data analysis in this thesis. A recurrent net outputs the estimated target identity at

each time step in a sequence [Williams and Zipser, 1989:271], so the 100 limit allowed

all sequences shorter than 100 to be analyzed automatically.

3.3.2 Azimuth Estimates. The aspect angle offset (bias) was generated using a

Gaussian distribution with a standard deviation of 2 degrees. Aspect angle random

deviations were generated using a Gaussian distribution with a standard deviation of 0.2

degrees. Random numbers from both distributions were limited to ± 3 standard

deviations. These values caused an azimuth uncertainty slightly larger than the ± 50

accuracy quoted for typical radar tracking algorithms [Libby, 1992b]. Azimuth

estimates were computed each time a signature was placed in a sequence.

3.3.3 Scintillation. RCSTOOLBOX computed noise-free amplitude values

for all radar signatures. For this thesis, scintillation was the only source of radar system

noise. Noise was added by taking an RCSTOOLBOX amplitude value, adding to it a

random number (Gaussian distribution with a given standard deviation), and using the

result as a representation for a range bin amplitude measurement in a noisy radar

signature. Noise contributions were limited to ±3 standard deviations: this prevented

the very low probability extremes of the Gaussian distribution from affecting the data

sets [Libby, 1992b]. Noise was added to each amplitude in the raw RCSTOOLBOX

signatures before thresholding (ref: Section 3.3.4). Note: this procedure does not

exactly model scintillation noise as it affects real radar systems. However, it is

sufficient to produce random amplitude variations that are similar to actual scintillation
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effects [Sacchini, 1992b]. This procedure was intended to simulate only scintillation

noise effects above the threshold limit (Figure 3-4).

The standard deviation for amplitude noise was 5 dBsm. This value was chosen

to simulate the effects of typical radar system noise [Libby, 1992b]. Noise effects were

computed each time a signature was placed into a sequence: a given (truth) aspect

angle was represented by multiple radar signatures, each with its own noise realizations.

3.3.4 Amplitude Thresholding. Each RCSTOOLBOX signature contained

200 range bins (with 200 LV and 200 LH amplitudes making up the polarization

diverse radar signature). This was too much information for a recurrent neural network

to process efficiently (using the computer resources available at AFIT), so some sort of

amplitude feature extraction was required. This thesis used a combination of amplitude

thresholding, windowing, and downsampling. Thresholding was chosen because

information in a radar signature is contained in the high amplitude peaks, not the low

amplitude nulls [Sacchini, 1992:125]. Therefore, all amplitude values were compared

against a -30 dBsm lower threshold value (Figure 3-4). For this thesis, it was assumed

that all thermal noise effects were eliminated by the same amplitude threshold. The

windowing and downsampling routines are described in the following sections.

3.3.5 Range Bin Windowing. The amplitude threshold was also used to locate

the aircraft within the 200 range bins (the range extent). Starting from the front of the

range extent, the range bin amplitude values were searched for the first non-threshold

value: this point marked the front of the aircraft's radar signature. The same process

was used to fimd the back of the signature. The range extent was then windowed to

include only those range bins between the front and back of the aircraft signature

(Figure 3-4). The target window size varied from about 10 to 200 range bins,

depending on the aircraft and aspect angles. Since each range bin measured 0.15

meters across the aircraft, the target window size corresponded to the aircraft width as

seen by the radar. The target window size (in range bins) was used as a feature value.
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Noise-Free Radar Signature (ref: Section 3.2.3):

30 Ig3 0~

0 ,o0
•-60 , 9600 0 10 10 20

900 50 100 150 200

Range Bin Number Range Bin Number

Add Scintillation (ref: Section 3.3.3):

-30 *~30~~

-60 9-601

-o, 50 100 150 200 5-900 50 100 150 200

Range Bin Number Range Bin Number

Threshold (ref: Section 3.3.4) and Window (ref: Section 3.3.5):

0 ?A;:

_-30•• -.. ..30

:60 80 100 120 140M :0 80 100 120 140
* Range Bin Nudnber . Range Bin Number

DownsanIple to in Peak Range:Bins (rf: Section 3.3.6):

89.00 16.00 17.71 5.85 6.21 1.91 -2.19 5.13 -30.00
Target I-, Amplitudes -1

Width I

Figure 3-4: Example of the FORMAT.RCST feature extraction process for a single
signature. This signature is from a MiG-21 at 0* elevation, 00 azimuth.
Note the small peak in range bin 142: scintillation noise makes it visible
above the thermal noise threshold.
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3.3.6 Amplitude Downsampling. A recurrent neural network must have a

fixed number of input feature values to describe each signature. Since the number of

range bins in the target window was variable, a feature extraction routine was needed to

select a fixed number of range bins for all signatures. This thesis used a peak extraction

routine. Each range window was divided into a fixed number m intervals, with each

interval being n range bins wide: n was constant for all intervals within the same

signature, but varied between signatures. Within each interval, a max out of n

downsampling routine selected the range bin with the highest LV and LH amplitude

sum. These peak LV and LH amplitude values (from the same range bin) became

feature values for that interval and were used as inputs to the recurrent neural network

(Figure 3-4). For this thesis, the phrase "peak range bin" refers to the paired LV and

LH amplitude values selected by this downsampling routine.

Amplitude downsampling was performed independently on each radar signature

as it was placed into a sequence. The location of the peak range bins varied between

signatures, but peak location was not used as an input feature value. For some radar

signatures, m was larger than the number of range bins in the target window. When

this happened, all of the available range bins were used directly as peak range bins.

The extra feature values were then padded with noise threshold amplitude values.

3.3.7 Data Normalization. All of the feature values were statistically

normalized before being written to an output data file. This allowed the recurrent

neural network to properly learn the input data sets. Statistical data were calculated

from the set of raw RCSTOOLBOX signatures, before any noise effects were added.

A mean and standard deviation were calculated separately for the azimuth, the target

width (based on amplitude thresholding), and the amplitude values. For the amplitude

statistics, all of the LV and LH amplitude values were considered together. Any

amplitude less than or equal to the amplitude threshold limit was ignored:

FORMATRCST computed the amplitude mean and standard deviation based only on

the data points above the amplitude threshold.
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3.4 Decision Processing: Recurrent Neural Networks

This section describes the RECURRENT computer program, which uses a real

time recurrent learning (gradient descent) algorithm for radar target identification. For

a diagram of a recurrent neural network, see Figure 3-5. The real time recurrent

learning algorithm itself is described completely in the literature [Lindsey, 1991:12-

17][Williams and Zipser, 1989:270-280]. Previous work at AFIT had already

implemented the algorithm as the computer program, RECNET [Lindsey, 1991:12-17].

However, certain modifications were required to properly handle the radar target

identification problem. For the RECURRENT source code listing, see Appendix C.

3.4.1 Modifications. The most important change called for breaking the

training loop over all input vectors (in RECNET) into two loops: one for sequences

and the other for signatures within a sequence. At the beginning of each sequence, the

output values, the output derivatives, and the partial derivatives matrix (P) were all set

to zero. The program was also changed to allow for batch mode learning after the

presentation of each signature, sequence, or epoch. For this thesis, batch mode

learning was done after each sequence. Finally, the hyperbolic tangent was used as the

non-linearity squashing function instead of the standard sigmoid.

3.4.2 Output Classification. A recurrent neural network can only process

sequences of data [Williams and Zipser, 1989:270-280]. For any given signature, there

will always be a time delay between presenting a signature to the net and recording the

output node classification values affected by that signature. For this thesis, the time

delay was one time step: the minimum sequence length was two signatures.

In RECURRENT, additional subroutines were written to compute classification

accuracies at each time step during a sequence. These subroutines checked to see if the

output node values were "right" or "good". If all of the actual output node values were

within 20% of the desired values, then the neural network classified the sequence (at

that time step) as "right". For the hyperbolic tangent, desired outputs were +1.0 for the

correct class and -1.0 for all other classes. If the output node with the highest actual
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Network Outputs for time t + 1
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Figure 3-5: Recurrent Neural Network Diagram

3-11



output (through a max pick routine) corresponded to the desired output node class, then

the neural network classified the sequence (at that time step) as "good". Note: all

outputs that are "right" are also "good", but not vice versa. Output node values and

their classification categories were recorded for each time step: these formed the basis

for the epoch accuracy and sequence length statistics.

3.4.3 Epoch Accuracy. Errors measured over an entire epoch (training or

testing) were expressed using the mean squared error per output node. This was done

by measuring the cumulative difference between the desired and actual output values

over all output nodes and signatures in an epoch, then dividing by the total number of

output nodes and signatures. The real time recurrent learning algorithm seeks to

minimize the mean squared error between the desired and actual output node values by

using gradient descent. The gradient descent process does this by adjusting the

interconnection weight values between the input and output layer nodes [Williams and

Zipser, 1989:270-280].

The mean squared error was also used by RECURRENT to modify the learning

rate (alpha) during training. After the first five training epochs, the learning rate was

cut in half if error increased by more than 1%. This is based on the RECNET variable

learning rate algorithm [Lindsey, 1991:16-17].

3.4.4 Sequence Length Analysis. For this thesis, the recurrent neural network

classified a target at each time step in a sequence except the first. This capability was

used to help find the optimum sequence length for radar target identification under

specific test conditions. If the classification accuracy at a given time step t + 1 (which

is computed after t input signatures have been processed) is summed over all test

sequences, then the resulting statistic is the accuracy of the network if all of the test

sequences contained exactly t signatures. This assumes that each sequence is

classified only by the output node values at the end of the sequence. If this summation

is computed for each time step starting at t = 2 signatures, then the number of

signatures required to produce unique sequences can be found (ref: Section 1.1.7).

3-12



3.5 Test Cases

The recurrent neural network algorithm was tested for radar target identification

performance in three steps. All of the topics discussed in Sections 3.2 and 3.3 were

applied, with specific modifications as listed under each test case.

3.5.1 Case One: Two Aircraft, No Noise. This test case was investigated to

prove the feasibility of using recurrent neural networks for radar target identification. It

was chosen for conceptual simplicity and computational speed. The following

conditions were used:

- 2 aircraft classes: MiG-21 (class 1), F-4 (class 2)

- 0* elevation

- 0O to 180P azimuth

- Perfect knowledge of aircraft azimuth

- No scintillation noise

3.5.2 Case Two: Five Aircraft, No Noise. This test case was investigated to

find a suitably confused region in the radar signature feature space. It was chosen so

the advantages of sequence analysis could be clearly demonstrated. The following

conditions were used:

- 5 aircraft classes: MiG-21 (class 1), F-4 (class 2), F-15 (class 3), F-16 (class 4),

F-18 (class 5)

- 0* elevation

- 0 to 180I azimuth in 300 sectors: train six separate nets, one for each sector.

- Perfect knowledge of aircraft azimuth

- No scintillation noise

- A minimum number of input features to describe each radar signature.
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3.5.3 Case Three: Five Aircraft, With Noise. This test case was investigated

to demonstrate that recurrent neural networks can be used for radar target identification

under realistic operational conditions. The following conditions were used:

- 5 aircraft classes: MiG-21 (class 1), F-4 (class 2), F-15 (class 3), F-16 (class 4),

F-18 (class 5)

- +50 to -5* elevation

- 600 to 90P azimuth (a sector from Case Two)

- Azimuth uncertainty included

- Scintillation noise included

3.6 Summary

This chapter described a methodology to: (1) generate high range resolution

radar signatures, (2) process these signatures into sequences for recurrent neural

network training, and (3) train and test a recurrent neural network for radar target

identification. The test case results are given in Chapter IV.
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IV. Results

4.1 Introduction

This chapter contains results from the three radar target identification test cases

described in Section 3.5. For all test cases, training and test data files were generated

from different aspect angles (within the same region). The recurrent neural net was

able to generalize from discrete training data at 1P aspect angle granularity, However,

recall that within any given sequence, elevation was constant and azimuth increased by

P per time step.

Case One considered two aircraft classes, a single elevation, and no noise. This

test case was investigated to show that a recurrent neural network can process

sequences of radar signatures and identify aircraft classes. Each radar signature wac

described by 22 external input features: the azimuth, target width, and 20 amplitude

values from 10 peak range bins. Four consecutive radar signatures were sufficient to

reach a test set accuracy of 99% "right" and 99% "good" (ref: Section 3.4.2).

Case Two considered five aircraft classes, a single elevation, and no noise. In

this test case, the recurrent net was deliberately given minimal information about each

radar signature. Over most of the aircraft aspect angles, radar signatures were described

by 4 external input features: the azimuth, target width, and 2 amplitude values from a

single peak range bin. Nine consecutive radar signatures were sufficient to reach a test

set accuracy of 84% to 99% right and 99% "good". One aspect angle region was more

difficult for target recognition (Sector 3, from 60° to 90 azimuth), where each radar

signature had to be described by 6 input features: the azimuth, target width, and 4

amplitude values from 2 peak range bins. For these aspect angles, 5 consecutive radar

signatures were sufficient to reach a test set accuracy of 99% "right" and 99% "good".

Case Three considered five aircraft classes, a ± 5° elevation range, and noise.

Each radar signature was described by 6 external input features: the estimated target

azimuth, estimated target width, and 4 noisy amplitude values from 2 peak range bins.

Elevation was not used as an input feature. Nine consecutive radar signatures were

sufficient to achieve a test set accuracy of 91% "right" and 96% "good".
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4.2 Case One: Two Aircraft, No Noise.

This test case proves the feasibility of using recurrent neural networks for radar

target identification. It was chosen for conceptual simplicity and computational speed.

It is also similar to the experiment conducted by Farhat [Farhat, 1989:670-680]. The

following recurrent neural network configuration was used:

- 1 bias input

- 1 external input (at time t) for azimuth

- 1 external input (at time t) for target width (ref: Section 3.3.5)

- 20 external inputs (at time t) for radar amplitude values, containing the LV and

LH amplitudes for 10 peak range bins from each signature (ref: Section 3.3.6)

- 2 output nodes (at time t + 1): MiG-21 (class 1), F-4 (class 2)

- no hidden nodes

There were a total of 50 adjustable weights in the weight matrix. Three sets of

data files were used to train and test the network. Training data files contained

signatures from 00 elevation at the integer azimuths from 0* to 180* (ref: the primary

aspect angles from Section 3.2.3). Each training file had a total of 344 sequences

(representing all possible 100 sequences from 00 to 1800 azimuth at a single elevation).

Test data files contained signatures from 00 elevation at the half angle azimuths from

0.50 to 179.50 (ref: the offset aspect angles from Section 3.2.3). Each test file had a

total of 342 sequences.

The network was trained for 100 epochs using an initial learning rate of 0.01.

During training, the learning rate generally decreased to 0.005 (ref: Section 3.4.3).

After training, the mean squared error per output node (versus the independent test sets)

was approximately 0.02. For test set accuracy, the net achieved 92% "right" and 98%

"good" after 2 signatures and 99%+ "right" and "good" after about 4 signatures. This

means the MiG-21 and F-4 can be identified under the Case One conditions, where each

radar signature is represented by 22 external input features. Radar signatures must be

measured over 40 of azimuth to identify the aircraft classes.
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These results are easy to explain: target regions within the signature feature

space were easily distinguished. Figure 4-1 shows a plot of target width as a function

of azimuth angle. Figure 4-1 clearly shows distinct regions for each target class, even

without extra information from the radar signature amplitudes. The azimuth and target

width features alone should be F fficient to identify the target classes. In this feature

space, almost any decision processing algorithm will achieve excellent results. The

recurrent neural network was able to process temporal sequences of radar signatures

and identify targets for the Case One conditions. This demonstrated the feasibility of

using recurrent neural networks for radar target identification.

200 * -
MiG-21

• 150

1l00

506-a X

bO
S 0.

0 30 60 90 120 150 180
Azimuth (degrees)

Figure 4-1: Azimuth versus target width for the Case One feature space. As the
aircraft azimuth varies, the radar measures different target widths. These
two features separate the MiG-21 and F-4 classes, except for a small
region near 1700 azimuth. The overall (sinusoidal) shapes are due to
physical geometry: both aircraft are longer than they are wide. The
discontinuities are due to low amplitude peaks alternately appearing and
disappearing near the -30 dBsm thermal noise threshold.

4.3 Case Two: Five Aircraft, No Noise.

This test case demonstrates the advantages of using a sequence feature space for

decision processing. For this problem, the number of external input features describing

each radar signature was deliberately reduced. This was done to force target regions in

4-3



the signature feature space to overlap. The recurrent net was able to process this

reduced amount of data as sequences and still identify the aircraft classes.

The 0* to 1800 azimuth range was arbitrarily divided into six sectors. This was

done to speed up network training (with smaller data files) and to find the azimuth

region that was the most difficult for radar target identification. The sectors were

numbered from I to 6 with sector 1 ranging from 0* to 300 azimuth. Each sector was

used to train separate networks. Case Two results are presented in two parts. The first

part deals with sectors 1, 2, 4, 5, and 6: these sectors all had similar results. The

second part deals with sector 3 (between 600 and 90* azimuth): sequences in this

region were more difficult to classify. Sector 3 was the most difficult to solve under

Case Two conditions, so it was analyzed further in Case Three.

4.3.1 Case Two: Sectors 1, 2, 4, 5, and 6

The following recurrent neural network configurations were used:

- 1 bias input

- 1 external input (at time t) for azimuth

- 1 external input (at time t) for target width (ref: Section 3.3.5)

- 2 external inputs (at time t) for radar amplitude values, containing the LV and

LH amplitudes for a single peak range bin from each signature (ref: Section

3.3.6)

- 5 output nodes (at time t + 1): MiG-21 (class 1), F-4 (class 2), F-15 (class 3),

F-16 (class 4), F-18 (class 5)

- no hidden nodes for sectors 1, 2, 5, and 6: 50 adjustable weights in these weight

matrices

- 3 hidden nodes for sector 4:104 adjustable weights in this weight matrix

For each sector, two sets of data files were used to train and test the network.

Training data files contained signatures from 0° elevation at the integer azimuths (ref:

the primary aspect angles from Section 3.2.3). Each training file had a total of 110
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sequences (representing all possible 100 sequences from a 300 azimuth region, single

elevation, five targets). Test data files contained signatures from 0* elevation at the half

angle azimuths (ref: the offset aspect angles from Section 3.2.3). Each test file had a

total of 105 sequences.

Sectors 1, 2, 5, and 6 were trained for 100 epochs using an initial learning rate

of 0.001. During training, the learning rate generally decreased to 0.0025. After

training, the mean squared error per output node (versus the independent test sets)

varied from about 0.1 to 0.35. Sector 4 was a bit more difficult to train, requiring 500

epochs. During training, the sector 4 learning rate generally decreased to 0.00125.

After training, the sector 4 means squared error per output node was about 0.35. Figure

4-2 shows the recognition accuracy plots against test data sets for sector one. Sectors 2,

4, 5, and 6 had similar accuracy plots.

- 100 100
80 80
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40 40'
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Figure 4-2: Plots of sequence length versus test set recognition accuracy for Case
Two, sector one. Results are given from three separate weight matrices
(hence the three curves on each plot) created by training the recurrent net
three times. Each weight matrix was tested for accuracy using both the
"right" and "good" criteria. As the number of signatures in a sequence
increases, the sequences becomes more and more unique.

The recognition accuracies shown in Figure 4-2 are based on classifying a

sequence using only the outputs from the last signature in the sequence. Since each

successive output value is dependent on all previous values, these plots measure the

information content in a given sequence length. For a two signature sequence, the test

set classification accuracies are about 10% right and 70% good. As the sequence length
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increases, recognition accuracy also increases. For sectors 1, 2, 4, 5, and 6, the

recurrent neural network achieves a test set accuracy of 84% to 99% "right" and 99%+

"good" accuracy after about 9 signatures. This means the five aircraft classes can be

identified (for most aspect angles) under the Case Two conditions, where each radar

signature is represented by 4 external input features. Radar signatures must be

measured over 90 of azimuth to identify the aircraft classes.

4.3.2 Case Two: Sector 3

The recurrent neural network configuration was the same as for sectors 1, 2, 5,

and 6, except that an additional 2 external inputs were used for radar amplitude values

(using two peak range bins rather than just one). Recall that only the peak amplitude

values were used as input features.. The locations of these peaks within the radar

signatures were not fed into the net (ref: Section 3.3.6). There were no hidden nodes,

so the weight matrix contained a total of 60 adjustable weights. Training and test data

files were generated using the same procedures as for the other sectors.

The network was trained for 500 epochs using an initial learning rate of 0.001.

During training, the learning rate generally stayed constant. After training, the mean

squared error per output node (versus the independent test sets) was approximately

0.055. Figure 4-3 shows the recognition accuracy plots against test data sets for sector

100 100 -
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Figure 4-3: Plots of sequence length versus test set recognition accuracy for Case
Two, sector three. These plots are similar to those in Figure 4-2, except
the results are based on 6 external input features to describe each radar
signature. Six feature values were required because 4 features could
provide only 90% "good" accuracy.
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three. For a two signature sequence, the test set classification accuracies are about 33%

right and 97% good. The recurrent neural network achieves 99%+ "right" and "good"

accuracy (versus the independent test sets) after about 5 signatures. This means the five

aircraft classes can be identified under Case Two conditions, where each radar signature

is represented by 6 external input features. Radar signatures must be measured over 50

of azimuth to identify the aircraft classes.

4.3.3 Case Two: Summary. This test case demonstrated the advantages of

using a sequence feature space for decision processing. As the sequence length

increased, recognition accuracy also increased. Since sector 3 was the most difficult to

solve under Case Two conditions, it was analyzed further in Case Three.

4.4 Case Three: Five Aircraft, With Noise.

This test case was investigated to demonstrate that recurrent neural networks

can be used for radar target identification under realistic operational conditions. The

following conditions were used:

- I bias input

- 1 external input (at time t) for the estimated azimuth value (bias standard

deviation of 20 and random fluctuations standard deviation of 0.20)

- I external input (at time t) for the estimated target width (ref: Section 3.3.5)

- A variable number of radar amplitude values, starting off with the LV and LH

amplitudes from a single peak range bin (ref: Section 3.3.6). Additional

amplitude features were added one range bin at a time.

- scintillation noise (standard deviation of 5 dBsm) added to the amplitude values

- 5 output nodes: MiG-21 (class 1), F-4 (class 2), F-15 (class 3), F-16 (class 4),

F-18 (class 5)

- no hidden nodes
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The network started out with a total of 50 adjustable weights in the weight

matrix. For each additional peak range bin, the number of weights increased by 10.

Data sets were created by extending sector three over a ±50 elevation range. To

adequately represent the distribution of noisy input values, each sequence was placed in

the data files twice. Noise effects were computed each time a signature was placed

into a sequence, so aspect angles between 690 and 81° azimuth were represented by a

total of 20 independent noise realizations. This applied to training and test data files.

Training data files contained signatures from the primary aspect angles (ref: Section

3.2.3). Each training file had a total of 2420 sequences (representing all possible 10°

sequences out of a 300 azimuth region, 11 elevations, five targets, each sequence used

twice). Test data files contained signatures from the half-angle elevations (ref: the

offset aspect angles from Section 3.2.3). Each test file had a total of 2100 sequences.

4.4.1 Case Three: One Peak Range Bin. The network was trained for 100

epochs using an initial learning rate of 0.0001. During training, the learning rate

generally decreased to 0.00005. After training, the mean squared error per output node

(versus the independent test sets) was approximately 0.65. Plots of test set recognition

accuracy versus sequence length are shown in Figure 4-4. Accuracy reaches a

maximum of about 55% right (with 8 signatures) and about 76% good (with 7

signatures). These results mean that a single peak range bin cannot provide enough

information to produce unique signatures.

4.4.2 Case Three: Two Peak Range Bins. The network was trained for 100

epochs using an initial learning rate of 0.0001. During training, the learning rate

generally decreased to 0.000025. After training, the mean squared error per output

node (versus the independent test sets) was approximately 0.28. Plots of recognition

accuracy versus sequence length are shown in Figure 4-4. Test set accuracy reaches a

maximum of about 90% right (with 9 signatures) and about 96% good (with 8

signatures). These results are remarkable, considering that target classifications are

made using only six input features and simple vector*rmatrix multiplications. Two peak

range bins provided almost enough information to produce unique signatures.
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Figure 44: These plots show the effect of additional input feature values on test set
accuracy for Case Three. The top pair of curves use 4 input features:
the azimuth estimate, the target width estimate, and two noisy amplitude
values from a single peak range bin. The bottom pair of curves use
amplitudes from an additional peak range bin. For both sets of curves,
test set accuracy increases as longer sequences are processed.

4.5 Summary

This chapter presented results from three separate test cases. Case One

demonstrated the feasibility of using recurrent neural networks for radar target

identification. Case Two showed that there is a relationship between the number of

signatures in a sequence and the test set accuracy. If enough signatures are included in

a sequence, the sequence will become unique. Case Three showed that a recurrent

neural network can process sequences of noisy data and still achieve very high test set

accuracms.
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V. Conclusions

5.1 Introduction

The goal of this thesis was to identify five aircraft classes using sequences of

high range resolution radar signatures. Radar target identification is an important part

of the aircraft surveillance mission. Identification was performed using a recurrent

neural network, which implemented a real time recurrent learning algorithm. Recurrent

neural networks were trained and tested against three successively more difficult radar

target identification problems. Chapter IV contains the results for each of these test

cases.

5.2 Conclusions

The first test case (two aircraft classes, 0* elevation, no noise) demonstrated the

feasibility of using recurrent neural networks for radar target identification. Each radar

signature was described by 22 external input features: the azimuth, target width, and 20

amplitude values from 10 peak range bins. Four consecutive radar signatures were

sufficient to reach a test set accuracy of 99% "right" and 99% "good". For Case One,

target regions within the signature feature space were easily distinguished.

The second test case (five aircraft classes, 0* elevation, no noise) demonstrated

the advantages of using sequence analysis to identify targets. The amount of

information in each radar signature was arbitrarily reduced in an attempt to force the

different target classes into the same regions of the signature feature space. For most

aspect angles, each radar signature was described by 4 external input features: the

azmuth, target width, and 2 amplitude values from a single peak range bin. Nine

consecutive radar signatures were sufficient to reach a test set accuracy of 84% to 99%

"right" and 99% "good". Sector 3 (600 to 900 azimuth) was more difficult for radar

target identification. Each radar signature in sector 3 had to be described by 6 input

features: the azimuth, target width, and 4 amplitude values from 2 peak range bins.

Five consecutive radar signatures were sufficient to reach a test set accuracy of 99%

"right" and 99% "good". Case Two showed that recognition accuracy increases as the
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sequence length increases. For cases when the radar signatures are not unique,

sequences can be used to help increase recognition accuracy.

The third test case (five aircraft classes, +50 to -5* elevation range, with noise)

demonstrated that a recurrent neural network can identify targets under realistic

operational conditions. Each radar signature was described by 6 external input features:

the estimated target azimuth, the estimated target width, and 4 noisy amplitude values

from 2 peak range bins. Nine consecutive radar signatures were sufficient to achieve a

test set accuracy of 91% "right" and 96% "good".

These results bring up several interesting conclusions:

- There is a significant amount of information contained in the temporal

sequences of radar signatures. Sequence processing increases target recognition

accuracy.

- Aspect angle and target width estimates make good features for radar target

identification. For simple problems, these two features may be sufficient to identify the

target classes. When noisy radar data is used, these features can be processed as

sequences: noisy features or not, they contribute to recognition accuracy.

- A wideband radar with a sufficient range resolution is required to measure the

target width. Once the target width is measured, most of the information (amplitudes)

in a high range resolution radar signature may be downselected and thrown out. Only a

few of the dominant range bins need to be retained as additional feature inputs.

- For this thesis, a simple peak extraction algorithm was sufficient to identify the

dominant range bins.

- As the radar signatures are described by more and more features, recognition

accuracy increases. This means there is a tradeoff between using sequence processing

with fewer features and "single-look" processing with more features. For a given radar

target identification problem, these two approaches can be compared to find the optimal

solution.
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5.3 Recommendations for Future Research

Are there any other features that may be used to help identify radar targets? For

example, temporal phase variations are used by synthetic and inverse synthetic aperture

mode radar to produce a two-dimensional image of a target. These phase variations

may be a feature value that can be used for aircraft target identification as well.

Alternatively, a recurrent neural network might be able to identify ground targets by

processing sequences of synthetic aperture mode radar signatures.

Can a recurrent neural network recognize the radar sequences from arbitrary

aspect angle trajectories? This thesis assumed that targets followed a "turntable

motion" type of trajectory. For real world radar applications, this type of motion is not

often seen: there is an infinite number of potential aspect angle sequences. Can a

recurrent network be trained (with a finite data set) to recognize an infinite number of

sequences?

What kind of performance will a recurrent neural network achieve when the

targets are just barely detectable above the thermal noise limit? This thesis did not

address thermal noise effects: for long range aircraft surveillance systems, thermal

noise will be a dominant factor. Can a recurrent neural network be used to locate

and/or identify targets that are right at the detection threshold?
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Appendix A. Software Development

Appendix B contains the source listing for FORMATRCST. This program

reads in wideband radar signatures (RCSTOOLBOX [Bramley and others, 1991: A,

11-13]) and formats them into sequences for input to RECURRENT. Appendix C

contains the source listing for RECURRENT, which is based on the RECNET code

[Lindsey, 1991:58-74]. RECURRENT implements a real time recurrent learning

algorithm. Appendix D contains the source listing for UTILITIES: these subroutines

are accessed by function calls from FORMATRCST and RECURRENT. All of these

programs are written in "ANSI C" for use on a NeXTstation computer.

A.1 File Structure

FORMATRCST and RECURRENT are written to use the following file

structure. All executable files are stored in a single (base) directory. Within the base

directory, all of the RCSJTOOLBOX wideband radar signatures are stored in a single

(signatures) subdirectory. This directory name must be written as the "path" variable in

FORMATRCST. The signatures directory may be further divided as desired (sorted

by aircraft, for example). These subdivisions must be written as filename extensions

for the "jet" variables in FORMATRCST. Also within the base directory, a new

subdirectory should be created for each test case. FORMATRCST writes data files to

the case directory (overwriting existing data files that have the same filenames).

RECURRENT uses the case directory to read input data and to write output data (again,

overwriting existing output files with the same filenames).

A.2 FORMAT_RCST

Different versions of FORMATRCST must be compiled for each different test

case. Test cases are described using the "#define" statements in FORMATRCST (ref:

B-I, B-2). FORMAT_RCST may be run multiple times to create training data from

one set of aspect angles and test data from a different set: this is done by commenting

out sections of MAIN within FORMATRCST (ref: B-5). FORMAT_RCST also
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produces "setup" files that control the RECURRENT neural network architecture (ref:

B-12). FORMATRCST is invoked by typing:

format_rcst case

where "case" is an existing directory. The following data and setup files are written to

the "case" directory (caution: existing files with the same names are overwritten):

feature statistics computed values from training data

testfeature. statistics echoed values from FORMATRCST,

created only if the "alternatestatistics.flag" is

set (ref: B-2).

undetected.aircraft aspect angles where an aircraft has fewer

range bins after windowing than the desired

number of peak range bins. Bug: the

minimum target width is 1 range bin, not 0.

mig2 1. rcst_data diagnostics file, typically commented out

clean_list.unnormalized training feature values with no noise

train. setup RECURRENT setup file

train RECURRENT training data, with sequences

presented in random order

train. unnormalized typically commented out (ref: B-13)

check. setup RECURRENT setup file

check RECURRENT training data, with sequences

listed in a defined order

check. unnormalized typically commented out (ref: B-13)

test.setup RECURRENT setup file

test RECURRENT test data, with sequences

listed in a defined order

test.unnormalized typically commented out (ref: B-13)
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A.3 RECURRENT

The recurrent neural network architecture is defined by the "train. setup"

file. This defines the size of the weight matrix and most of the training parameters

(epochs, alpha, ete). Setup files are used for all three data input files: this allows each

file to have a different number of sequences and a different sequence length. Bug: the

sequence length analysis subroutine assumes equal sequence lengths. RECURRENT is

invoked (with a random initial weight matrix) by typing:

recurrent case

where "case" is an existing directory containing the FORMATRCST data files.

RECURRENT may also be invoked (with a user-defined initial weight matrix) by

typing:

recurrent case weightsfile

where "case" is an existing dihrctory containing the FORMAT_RCST data files, and
"weightsfile" is an existing file with a properly sized weight matrix. For both

methods, the following data and setup files are written to the "case" directory

(caution: existing files with the same names are overwritten):

weights .initial randomly generated weight matrix

weights. final weight matrix after training

weights .restart echoes a user-defined initial weight matrix

epochs mean squared error and accuracy results for

each training epoch and for one test epoch.

This file is formatted for NXYPLOT, a

plotting program for NeXT computers.

length. check accuracy versus sequence length (ref: Section

3.4.4) for "check" data, computed during the
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test epoch. This is formatted for NXYPLOT,

a plotting program for NeXT computers.

length. test accuracy versus sequence length (ref: Section

3.4.4) for "test" data, computed during the

test epoch. This is formatted for NXYPLOT,

a plotting program for NeXT computers.

signatures .check actual and desired output node values for the
"check" data (signature by signature),

computed during the test epoch

signatures. test actual and desired output node values for the

"test" data (signature by signature),

computed during the test epoch

sequences .check diagnostics on sequence classification (not

very useful), computed during the test epoch

sequences .test diagnostics on sequence classification (not

very useful), computed during the test epoch
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Appendix B. FORMATRCST Source Code

This appendix contains the FORMAT_RCST source code. The various functions

of FORMATRCST are described in Section 3.3.

/* format...rcst .c ****************************

This program reads ".wbtable, files created by the program PTDTABLE and
formats the data for input to a recurrent neural network. The ".wbtable°
data format is described in the RCSTOOLBOX User's Guide [Bramley and others,
1991:A, 11-13]. PTDTABLE operations are also described in the RCSTOOLBOX
User's Guide [Bramley and others, 1991:Ch 9, 1-3]. The program RECURRENT
(described in Appendix C) implements the recurrent neural network.

Each line in the output files have the following format:
[ (elevation tag], (azimuth tag], [azimuth feature value], [target width feature value],

(LV amplitude 1], [LH amplitude 1], fLv amplitude 2], ILH amplitude 2]... (etc, for all
desired range bins describing each signature), [class 1 output node desired value],
(class 2 output node desired value]... (etc, for all target classes) )

Multiple lines are listed to complete each sequence. Multiple sequences are
listed to complete the data file.

Written Fall 1992 by Eric T. Kouba

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

char *path = { "rcst-signatures/° ; /* Directory containing all input files. 'I
char *directory; /* Target directory to place output files.

The target directory must already exist.
Any existing files with the same names as
the output files will be overwritten. */

#define recursion 2 /* The number of times to pass through the
data creation loops. Useful for getting
multiple examples of noisy data. 'I

#define aircraft 5 /* Number of target classes, with the
subdirectory and file name prefixes
within the *path directory, above. 'I

char *Jet~aircraft] = { "mig2l/mig2l_", *f4/f4_°, "f15/fl5_°, f16/f16-*, *flS/f18_ 1;

#define rcstazimuthbegin 60 /* .wbtable signature index to begin and 'I
#define rcstazimuthend 90 I* end reading. This index corresponds to

the target azimuth. 'I

int rcstazimuth a rcst-aziruthend - rcst-azimuth-begin + 1;
I* Signatures per target per elevation. 'I

#define rcst_elovation 11 I* Number of .wbtable files per target class,
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with each file containing data franm
different elevations. *I

char *rcst..file~rcst..elevation] ={el50_*, "e140_1, *el30_*, *el20-*,. *ellO21, le1002.,
*el1_O.., lel_.20..., le1..30..., lel_40_, *el..50_1)

I' Example .wbtable path and filename:
*rcst..signatures/mig2llmig2l...e125..lv.wbtableI

containing the LV polarized data for a KiG-21
at 2.5 degrees elevation. */

#define azimuth...offset...sigma 2.0 I' Bias standard deviation in degrees between
truth and estimated azimuth */

#define azimuth-..sigma 0.2 /' Standard deviation for random azimuth error '
#define amplitude...sigma 5.0 I' Scintillation noisestandard deviation '
#define amplitude...threshold -30.0 I' Thermal noise threshold *I
#define range.Jbins 200 /' .wbtable range bins per radar signature '
#define feature...bins I /' Desired number of output range bins

per target (feature range bins) '
*define sigs..per...seq 10 /' Signatures per sequence 'I
#define node..on 1.0 I' tanh values for the recurrent net '
#define node...off -1.0

#define alternate..statistics...flag 0 /' 0 to use calculated values '
#define input...az~jmean 75.000000 /* FORXAT...RCST computes data statistics/
#def in. input..az..sigma 8.973265 I' for normalization. External values '
#define input...width~mean 42.854546 P' can be used instead by setting the '
#define input...idth~sigma 18.506121 /* flag = 1. Useful for creating test '
#define input..amp-aean -14.737031 /* data. '
#define input-.amp-.sigma 12.598812

FILE 'Open...Pile2(); I' Subroutines from UTILITIES.C. '
FILE *Open-Pile40;
mnt Get-.Integer 0;
float Uniforu.Jandomo; I' RAN1.C from Numerical Recipies in C. *
mnt integer-..seed;
float Gaussian...Randomo); /' GASRAN.C from Numerical Recipies in C. '
float 'Vector 0;
mnt "*IntegerjlatrixoC;
float "'KMatrixL3Do;

FILE 'LV; P' LV polarization, input data '
FILE 'LH; I' LH polarization, input data '
FILE 'RCST...DATA; P' Diagnostic listing of the raw .wbtable data. '
FILE 'STATISTICS; I' Output listing of data statistics. 'I
FILE *UNDETECTED; P' Diagnostic listing of aircraft and aspect angles that

are too narrow for the desired number of range bins. '
FILE 'FZTURE-PATA; I' Unnormalized output data '
FILE 'XBCUXRRBNT..ATA; I' Normalized output data 'I
FILE 'EUCURR3I...SETUP; I' Setup file for output data '

int seqs...per...l; I' Sequences per elevation '
mnt total-.signatures;
mnt total-jequencee;

otruct (
float "'*aspect; I' elevation and azimuth '
float "'*input, I' combined LV and LH data '
met "*flag; I' sequence marker for random ordering '

)datataircraftls
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float az.sum; /* for statistics /
float azsquare;
float az.joean;
float az_sigma;
float azjnin;
float azmjax;
float az.n;

float width._sum;
float widthsquare;
float width-mean;
float widthsigma;
float width-min;
float widthnax;
float widthn;

float amp.sum;
float ampsquare;
float amp-_ean;
float amp-sigma;
float amp-jin;
float amp_jaax;
float amp_n;

int window-start; /* First and last range bins with a */
int window-end; /* non-threshold amplitude value. */
int targetregion; /* Apparent target width. */

int interval-start; /* These are used to divide the target region */
float interval-width; /* of interest into n intervals, where n- /
int interval-end; I* is the desired number of range bins to use 'I
float miax.total.amp; /* as feature values. */
int tagged.range.bin;

float *signature-input; /* Pointers for line by line data processing. '1
float *noiseinput;
float *signature-output;
float signaturelv; /* Input data value. */
float signature-lh;
float bin.lv; /* Output data value. /
float bin_lh;

float azimuthoffset;
float azimuth-noise;
float azimuth.estimate;
float amplitudeinoise;

char ignore[80];
float trash;
int a; /* aircraft counter 'I
int b; /* elevation file counter /
int c; I* signatures per elevation counter *I
int d; I* sequences per elevation counter 'I
int e; I* signatures per sequence counter */
int f; /* total sequences counter *I
int gi /* file recursion counter */
int i, J; /* generic counters */

void Initialize(); /* Subroutines *I
void ReadSignatures [)
void PrintRCSTData ()
void Set.Statistics (),
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void Coumpute...Statistics 0;
void Extract-.widt~h-eatureo;
void List..Clean..Sequences 0;
void Extract...Clean-Features 0;
void Downuample 0;
void Print...Signature();
void Print...Recurrent-Setup 0;
void RandomSequences 0;
void List-Noisy-.Sequences 0;
void Extract-Noisy...Features(0;
void Add-Noise 0;
void Print.Jloisy....ignature 0;

/* main program for FORXAT...RCST ************* /

void main( mnt argc. char *argy~l

if( argc I= 2
ExitjMessage( *Usage: format..rcst <cdirectory>*)

directory = argvC1];

srand( time( N ULL )); /* Use the cheap Unix random number generator
integer-see = -rando); I' to seed the high class *Numerical Recipies,*
Uniform..jandom C &integer..seed ); I generator. *

Initializeo;

for( a = 0; a < aircraft; a+. /*I Read all .wbtable files. ~
for( b =0; b c rcst..elevation; b++

LV =Open.-.File4( path, jetta]. rcst...file(b], 1lv.wbtable', *r'
LH Open-.Filed( path. jettal. rcst...file(b). "1h.wbtable., Irl
Read-Signatures(0;
fclose( LV )
fclose( LU )

/* Diagnostics print of raw .wbtable data for one aircraft. *
I' RCST...DATA aOpen...File2C directory, */mig2l.rcst...datal, 1w*)

Print-.RCST-.Data( a =0 )
fclose( RCST....ATA )

if( alternate-.statistics..flag a= 1
1' Use defined statistics.

STATISTICS = Open..File2( directory, */test...feature.statistics*, *w")
Set-.Statistics();
fclose( STATISTICS I

also
{ I'/ Or computed values. *

STATISTICS a Open..File2( directory, 1/feature.statistics*, 1w,)
Compute...Statistics C),
fcloseC STATISTICS I

UNDIDTECTED a OpenFil*2 C directory, * /undetected. aircraft', 'w')

fprintf( UNDETECTED, *clean~list:\n0 );
13ATURX-.DATA - OPsA-File2( directory, */clean-list.unnormalized-, v );
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List...Clean-.Sequences 0; 1' No noise added. ~
fclose C FEATURE.DATA );

RECURRBNT_.SETUP = openJile2( directory. 1/train.setup., *w*
Print...Recurrent...Setup ()
fclose ( RECURRENT,.SETUP )

fprintf( UNDETECTED, I\ntrain:\nl)
FE&TURB.J)ATA = Open...File2( directory, 1/train.unnormalized", Iw )
RBCURRENT-..DATA = Open-.File2( directory, */train*, *wl)
for( q = 0; g <recursion; g++

integer-s.eed = -rando; /* Re-initialize the random seed.
UniformRandom( &integer..seed )
Random-.Sequences 0; /* Random sequence order, with noise.

fclose( FEATURE-.DATA )
fclose ( RECURRENDT..DATA

RECURRENT...SErUP = Open-File2C directory. */check.setup., *w"
Print-Recurrent....etup C);
fclose( RECURRENT_.SETUP )

fprintf( UNDETECTED, I\ncheck:\n )
FEATURE...DATA = open..File2( directory, I/check.unnormalized., 1w,
RBCURRDITDATA = Open-jile2( directory. */Check*, *wl)
for( g=0; q < recursion; g++

integer-..seed =-rand 0,
Uniform..Aandom( ainteger...seed )
Listjqoisy...Sequences();

fclose ( FEATURE-.DATA )
fclose( RECURRENT..DATA )

RBCURREIT.3ETUP aOpenFile2( directory, */test.setup., "w*)
Print-Recurrent...Setup();
fclose C RECURRmIT_.SETUP )

intager..seed z -rand 0;
Uniform-.Random( &integer...seed )

fprintf( UNDETECTED, I\ntest:\n h
VZATURBDPATA a Open-Yile2( directory, 1/test.unnormalized', "wI)
RBCURRENT..D&TA = Open-File2( directory, '/test', Iw")
for( 0; 9 <sg recursion; g++

integer-s..eed a -rand 0;
uniformA.Random C &integer...seed )
List-NoiSY-.Sequences 0;

fcloseC FEATURELJATA )
fcloseC RCUCRRUITD&)TA

fclo~s( UNDSTECTID )

a~ nd Min *
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I' Subroutine to dynamically allocate memory

void InitializeO)

saequ..per..el a rcst...azimuth -sigs~per..aeq + 1;
total-..signatures aircraft *rcst...elevation *rcst..azimuth;

total-..sequences aircraft *rcst..elevation *seqs..per...el;

for( a a 0; a < aircraft; a++

datata).aapect M atrix_.3D( 0, rcat..elevation -1. 0, rcst..azimuth - 1, 0, 1 )
datataJ.input = )atrix..3D 0, rcst...elevation -1, 0, rcst..azinuth -1,

0. ( range...bins * 2 )-1 )
data~aj.flag = nteger-matrixC 0, rcet-o.levation-l. 0, seqs..per..el-l )

noise...input = Vector( 0, (range-..bins * 2)-i );
signature..output = Vector( 0. 2 + (f eature-b.ins 2)-il)

return;

/* end INITIALIZE 0

1' Subroutine to read one .wbtable file 0000000000000/

void Read-.Signatures C

for( i a 0; i < 10; i..
fgetsC ignore. 80, LV )

fscanf C LV. '%f If If', &trash, &trash, &datala].aspect[b] (0] (0]
for( i = 0; i < 10; i.. ) 1* get the elevation 0

fgets( ignore, 80, LV )

fgetaC ignore, 80, LU )

for( c = 0; c < rcut..azimuth...egin; c++
for( i -O; i1 <1. (range-.bins 2); i1.)

fecanf( LV, *%f,, &trash )
facanfC LU. O%f,, &trash )

for( c a 0, c < rcst~azimuth; c++

data~a3.aspectjbj(c1(0j x data~al.aspectlb](01f01; /0 elevation 0

fecanfC LV, If". &datalal.aspect(bICc] (1]); /0 azimuth 0

f scant C LU, *%f, &trash );

for(iO i a0 1<range..bins; i++~

fecanf( LV, *%f", &datafal.iriput(b1 Cc] i 02] ) /* LV amplitude 0

facanf( LV, *%fl, &trash );
data(al.input[b)[clfi * 21 =Cdata(a].input~b]Cc1[i 021 / 100.0 )-200.0;

fecanf( LII, *If*, &datataI.iriput~bl(cI(1 + Ui * 2)1); /* LH amplitude 0

fscaratC LH. 'Ifo &trash );
data[al-input~b1(c)(1 + Ci * 2)] datataJ-inout(b](c](1 + Ui * 2)1 100.0

-200.0;
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I* Diagnostics print of the first few range bins from the first signature *
/* Printf( 0%6.lf %6.lf 1, data[al.aspect[b]COJCOI. datata].aspect[bH]l0l );

for( i a 03 i < 4; i++)
printf( 1%7.2f 1. data~aj.input(b][O]CiI);

printf( *\n")

return;

/ * end READ-SIGNATURES /

/* Subroutine to print out the raw .wbtable data for one aircraft

void Print-.RCST..Data( mnt a

for( b = 0, b < rcst-.elevation; b.+
for( c =O0 c < rcst-.azimuth; c++

fprintf C RCST...DATA, *%6.lf *, data(a].aspectfb][c](0] )
fprintf C RCST-DATA. 1%6.lf ., datalaJ.aspect~b]CcJ[l] )
for( i = 0; i < (range-bins * 2); i++)

fprintf( RCSTDATA, -%7.2f ", data~albinput~b]Cc][i]
fprintf C RCST....ATA, *\n*)

return;

/ * end PRINT-RCST...DATA /

I' Subroutine for using defined statistics to normalize the diata ' " '

void Set...Statistics C)

az..pean =input...az-jmean;
az...sigma -inpiat-.az...sigma;
width-mean =irnput-.width..mean;
width-.sign& inputwidth...sigma;
amp-moan -input-.aap-ean;

amp-.sigmaa input-amp..uigma;

fprintf C STATISTICS, *\n\taean\t\tsigma\n )
fprintf C STATISTICS, Oaz\ttf\ttf\nl. az...pan, az....igmaa;
fprintf( STATISTICS, -width\t%f\t%f\nO. width..pean. width-sigma )
fprintf C STATISTICS, oaap\ttf\ttf\n*, am-..mean, amp-.sigma )

return;

/* end SZTSTATISTICS ~

/* Subroutine to compute statistical values from the input data

void Compute."8tatistics()

&Bum 0.0; 1' Initialize/
au..Aquare = 0.0;
aZ-Aean a 0. 0,
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az..sigma = 0.0;
az...Mn = 999.0;
az..Aax = -999.0;
az...n = Cfloat)total-.signatures;

width-.sum = 0.0;
width-.square =0.0;
width~jaean =0.0;
width-.sigma =0.0;
width...Mn a999.0;
width_^.ax a -999.0;
width-ji z Cfloat)total-signatures;

amp-sum = 0.0;
amp-.square = 0.0;
aqp-mean z 0.0;
amp-sigma = 0.0;
appmp.in = 999.0,
aMp..Aax = -999.0;

a =- 0.0; /* Amplitude statistics are computed only for values above
the thermal noise threshold *

for( a =0; a < aircraft; a++ )
for( b =0; b < rcst...elevation; bi..

for( c a 0; c < rcst...azimuth; C++

azsm += dataia] .aspect(b][c]Cl];
az..square += data~a] .aspect~b] Cc](1] datatla].aspect(b] Ic] [1];
iW data~al.aspect(b)(cJ Cl < az-jnin

azxjiin = data~al .aspect(b][c] (1];
if~dataala].aspectfb] Cc] (11 > az..jax

az.A~ax = data~a] .aspect(bJ Cc] Cl];

ZEctract-width-.Peature 0;

width...sum += C float) target...region;
width..square += C float) target-.region *target-.region )
if(C (float) target...region < width-mipn )

width-min - C float) target-.region;
iW C float)target-.region > width_^.ax

width-jmax a C float) target...region;

for( i a 2; i < (range-b.ins * 2); i..
ifW datatal.input(b] CclCii > amplitude-..threshold

amp-.sum += data~al .input~bJ Cc[i ii
amp-..square += data~a] .in~put~bl Cc] Iii datalai.input(b] (ci Ci];
Wf data~al.input~biCcji) <i amp.jain

amp..Ain a datalal.inputblbIclIi];
if( datataliniput(bi Cci i] > aap-m.ax

amp..pax - datatal.irput~bi (c] ii;
amp-n +z 1.0,

az.Aean z az...su / az...;
az..,igma s qrt(C ax-n *az..square - azhimz * az..sun az..n A azji - 1 M);

width-.Pean =width-sAm I idth-n;
width-sigma s qrt(C width-ji*width....quare-width-.jum*widtb...suu) / Cvidthj-' Cwidth-.n-l)));

*MPa ampNo-Sunm / ampn;
SM *im mqrt(C amp...zi'm..squar* - ap.um .. u I/Camp-.n * m.. -1 ))



fprintf( STATISTICS, "\n\tsum\t\tsquare\t\tmean\t\tsigma\t\tmin\t\t-ax\n );
fprintf( STATISTICS, "az\tf\tf\tjf\t', azsum, az.square, azMean );
fprintf( STATISTICS, -%f\t%f\t%f\n", az_sigma, azzin, az_.ax );
fprintf( STATISTICS, "width\tf\t%f\t%f\t., width-sum, widthsquare, widthmean );
fprintf( STATISTICS, "%f\t%f\t%f\n., width-sigma, widthjin. width_jax );
fprintf( STATISTICS, "amp\t%f\t%f\t%f\t", amp-sum, amp-square, amp-mean );
fprintf( STATISTICS, "%f\t%f\t%f\n*. amp-sigma, amp-min, amp.Aax );

return;
I
/* end COMPUTE-STATISTICS '/

/* Subroutine to compute target width based on the clean input data ** ** *
This subroutine called only to get statistical data. *

void ExtractWidthjFeature ()
(

window-start = 0;
window-end = range-bins - 1;

/* Search for the first range bin that has a non-threshold LV or LH value */
while( datata].input[b] [c] [window.start * 21 <= amplitudethreshold &&

datatal.input(b](c) [ + (window-start * 2)] <z amplitude_threshold &&
window-start < window-end

window-start++;

/* Also for the last range bin */
while( data[al.input(b] [ci [window.end * 21 <= amplitudethreshold &&

datatal.input~bl [c]c [ + (windowend * 2)] <= amplitudethreshold &&
window-start < window-end

window-end--;

targetregion = windowend - windowstart + 1;

return;
)
/* end ECTRACTWIDTKFEATURE */

/* Subroutine to print formatted, unnormalized output data, no noise *

void ListClean.Sequences ()
C

for( b = 0: b < rcst-elevation; b++ )
for( d a 0: d < seq_.per.el; d++ )

for( a = 0; a < aircraft; a++ )
for( e a Os e < sigs.per.seq; e++
C

c a d + e;
NxtractCleanFeatures ();
PrintSignature ()

returns

/* and LISTCLUALSNOUU /
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/* Subroutine to extract formatted, unnormalized output data, no noise ***********/

void ExtractCleanFeatures ()
{

signature-output,[0] = data(a].aspect[b] c] [1]i;

window-start = 0;
window-.end = range-bins - 1;

while( data~a].input(b][c][windowstart * 2] <= amplitudethreshold &&
datata].inputtb][c]i + (window-start * 2)] <= amplitudethreshold &&
window-start < window-end

windowstart++;

while( data~a].inputtb] [c] fwindowend * 2] <= amplitudethreshold &&
datata].input(b] [c]1 + (window-end * 2)] <= amplitude-threshold &&
window-start < window-end

window.end--;

targetregion = window-end - window-start + 1; /* Get the target width */
signatureoutput[l] = (float)targetregion; /* And downsample the range bins

to get the desired number '/
Downsample( data(a].input~b] [c] ); /* of amplitude features. */

return;
)

/* end EXTRACTCLEANLEATURES *l

/* Subroutine to perform a max out of n downsample. Divides the target region of
interest into m intervals of range bins where m is the desired number of range bins
to pass as feature values. The LV and LH amplitudes for each selected range bin
are passed as feature values. ** ** * * * * *

void Donmsample( float *signature.input
(

if( target-region <= feature-bins ) /* If the target has fewer range bins than */
{ /* the desired number of feature range bins *I

fprintf( UNDETECTED, *aircraft %d, elevation %d, azimuth %d: , a. b, c );
fprintf( UNDETECTED, "%d range bins\nl. target-region );

for( i a 0; i < feature_bins; i+÷
(

if( i < targetregion ) /* Use all range bins in the target window **
{

if( signatureinput[(window.start + i) * 2] < amplitudethreshold ) /* LV **
signature_output[2 + Ci * 2)] = amplitude-threshold;

else
signature.output(2 + (i * 2)] = signatureinput[(window.start + i) * 2];

if( signature.input[1 + ((window-start + i) * 2)] < amplitudethreshold )
signature.output[3 + (i * 2)] = amplitude-threshold; /* L4 */

else

signatureoutput(3 + (i * 2)) u signature_input(l +
((window-start + i) * 2)];

else /* and then pad with thermal noise values */
(

signature-output(2 + (i * 2)] a amplitude-thresholdz
signatur..output(3 + (i * 2)] a amplitudesthreshold;
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)

else /* There are enough range bins in the target window *I

interval-start = window-start;
interval-width = (float) target-region / (float) feature-bins;

/* Divide the target into intervals of
range bins. Select one range bin from
each interval based on max pick. '/

for( i = 0; i < feature-bins; i.+
(

interval-end = window-start + (int)( interval_width * (float)( i + 1 ))M
max._total-amp = 2.0 * amplitude-threshold;
signaturelv = amplitudethreshold;
signaturelh = amplitude-threshold;
tagged&rangebin = interval-start;

for( j = interval-start; j < interval_end; j++
(

if( signature-input[j * 21 < amplitudethreshold ) /* LV 'I
binlv = amplitudethreshold;

else
bin-lv = signature-input[j * 2];

if( signature.input~l + (j * 2)] < amplitude-threshold ) /* LH *1
binlh = amplitude-threshold;

else
birnlh = signature.input(l + (j * 2)];

if( binIv + binlh > maxtotal_amp
{

maxtotal-amp = bin_/v + binl.h;
signature.iv = bin.lv:
signaturelh binlh;
tagged-range-bin = J;

)

signature-output[2 + (i * 2)) = signatureIv;
signature...output[(3 * (i * 2) 1 = signature...lh;

interval-start = intervalend;
)

)

return;
)
/* end DOWNSANPLB '

/* Subroutine to print one line of formatted, unnormalized output data, no noise *

void Print._ignature ()
{

fprintf( FVATURUpATA, 0%6.lf *. datala].aspect(b[c] (0) ); /* elevation '1
fprintf( FVTUREJRDATA, 1%6.1f 0, datata].aspect(b] [c] [l) ); /* azimuth *e

for( i w 0; i < 2 + (feature-bins * 2); i++ ) /* azimuth, width,
fprintf( FCATURUDATA, 1%7.2f 0, signature-outputti] ) / /* and amlitudes */

for( i = 0 i < aircraft: i++ )
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if( i == a }
fprintf( F&TUR..DATA, 1%4.lf " node-on );

else
fprintf( FATURE_.DAT&A, -%4.lf " nodeoff );

fprintf( FEATUREDATA, '\n );

return;
)
/* end PRINTSIGNATURE '/

/* Subroutine to print a setup file for the program RECURRENT ''** ** *

void PrintRecurrent-Setup( char *extension
{

fprintf( RCCURRENTSETUP. "%d :input features >= l\n", 2 + (feature-bins * 2) );
fprintf( RUCURRENT_SETUP, -%d :output classes >= l\n.0 aircraft );
fprintf( RBCURRENT-SETUP, -0 :hidden nodes >= O\n* );
fprintf( RBCURRENT-SETUP, *%d :total sequences >= l\n', total-sequences *

recursion );
fprintf( RBCURRMETSTUP, '%d :signatures per sequence >= 2\n*, sigs..perseq );
fprintf( RECURRMITSETUP. '100 :training epochs >= O\n" );
fprintf( RSCURRENTSETUP, 10.0001 :learning step size alpha > 0.0\n );
fprintf( RBCURRENTSETUP, "3 :sigmoid flag, 1 linear, 2 exp signoid, * );
fprintf( RECURREiTSETUP, *3 tanh sigmoid\n )I;
fprintf( RECURREM-SETUP, *2 :batch learn flag, 1 frame, 2 sequence, 3 epoch\n" )

return;
)
/* end PRIM..RBCRRET_SETUP */

/* Subroutine to print noisy sequences in a random order (training data) *****/

void Random..Sequences ()

for( a m 0, a < aircraft; a++
for( b = 0; b < rcst.elevation; b÷+ )

for( d = 0; d < seqs..perel; d.. )
data(al.flag(b) (d] = 0; P* mark each sequence with a flag '/

for( f a 0; f < totalsequences; f÷
C

a a (int)( Unifors-.ando.( &integer_seed ) * (float)aircraft):
if( a as aircraft )

a a aircraft - 1; /* generate a random target class */

b a Cint)( Uniform-Aandom( &integer-seed ) * (float)rcst..levation)I
ifC b an rcet.elevation )

b a rcstelvation - 1; I' random elevation /

d =int)( UniformRandom( &integer-seed ) ( Cfloat)seqs.per.el I
if( d an seqseper.el )

d = seqs.per-el - 1; I' random azimuth to begin the sequence -I

*hile( datatal.flag(bI [dl an I ) /- search from that point through the */
C '/ sequences until you find a sequence */
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d++; I* that has not yet gone into the file 'I
if( d == seqs.per.el
{

d = 0;
b++;
if( b == rcst.elevation
(

b = 0;
a++;
if( a == aircraft

a = 0;
I

)
)
data~a].flag(b] (d] = 1; /* Mark the sequence flag 'I

I' Generate the azimuth bias that applies
to all signatures in the sequence. *I

azimuthoffset = azimuth-offset-signa * GaussianRandom( &integer.seed );
if( azimuth-offset > 3.0 * azimuthoffaetsigma )

azimuth-offset = 3.0 * azimuth-offset.sigma;
if( azimuth-offset < -3.0 * azimuthoffset_sigma

azimuth-offset = -3.0 * azimuth-offset.sigma;

for( e 0=; < sigs.per-seq; ea+ /* Loop over all signatures per sequence */
{

c =d + e;
ExtractNoisyFeatures (;
PrintNoisySignature); /* noisy, normalized data t/

I* PrintSignature(; *I /* noisy, unnormalized data */

)

return;
)
/* end RANDOL-SBQUCWES *1

/* Subroutine to print noisy sequences in aspect angle order (test data) **********/

void List_.joisySequences ()
(

for( b = 0; b < rcst.elevation; b++ )
for( d = 0; d < seqsperel; d++ }

for( a = 0; a < aircraft; a++ )
(

azimuthoffset = azimuthoffset_sigma * GaussianRandom( &integerseed );
if( azimuth-offset > 3.0 * azimuth.offset.sigma

azimuth-offset = 3.0 * azimuth-offsetsigma;
if( aziuuthoffmet < -3.0 * azimuthoffset.sigma

azimuth-offset = -3.0 * azimuthoffset_sigma;

for( e a 0; e < sigs-per.seq; a++
(

c = d + e;
ExtractMoisyFeatures ( );
PrintNoisySignature ();

I* PrintSignature( );
I

)

return;
B
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/* end LIST.NOISYSEQUNCES */

At Subroutine to add noise to the noise-free RCS TOOLBOX signatures, and extract
features based on the noisy data values *

void ExtractjNoisyFeatures ()
{

AddNoiseo;

signature.output [O] = azimuth_estimate;

window.start = 0;
window-nend = range-bins - 1;

while( noise-inputiwindow.start * 21 <= amplitudethreshold &&
noise-inpat[l + (window-start * 2)] <= amplitudethreshold &&
window-start < window-end

window.start++;

while( noise.input[window-end * 2] <= amplitude-threshold &&
noiseinput[l + (windowend * 2)] <= amplitude-threshold &&
window.start < window-end

window_end--;

target-region = windowend - windowstart + 1; A* Get the target width */
signature.output [i] = (float)target-region;

Downsample( noise-input ); /* Select amplitude features

return;

/* end EXTRACTNOISYFEATURES */

/* Subroutine to add gaussian noise to the azimuth and to each amplitude in the
noise-free RCS TOOLBOX data files *

void AddNoise()
{

azimuth-noise = azimuth-sigma * GaussianRandom( &integer.seed )
if( azimuth-noise > 3.0 * azimuth-.sigma

azimuth-noise = 3.0 * azimuthsigma;
if( azimuth..noise < -3.0 * azimuth-sigmaa

azimuth-noise = -3.0 * azimuth-sigma;

azimuth-estimate = data(a].aspect(b] [c] (11 + azimuthoffset + azimuth-noise;

for( i a 0; i < (range.bins * 2); i÷÷ ) 1A Loop over all amplitude values 'I

amplitude-noise = amplitude-sigma * GaussianRandom( &integerseed );
if( alitude-noise > 3.0 * alitude-sigmaa

amplitude-noise a 3.0 * amplitude-sigma;
if( amltude-noise < -3.0 * amplitude-sigma

amplitude-noise a -3.0 * amplitude-sigma;

noibse-inut(il a datala* .input~b* [c] (i] + amplitudenoiseg
)

return,
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/* end ADD-NOISE ~

/* Subroutine to print one line of formatted, normalized, noisy data

void PrintNoisy.Signature (

fprintf( RBCURRENT-DATA, *16.1f ,data(a].aspect(b]Cc]CO] )
fprintf( RECURRENT...D&TA. *%6.lf .data~a].aspect~b]CcJ]ll )

fprintf( RECURRENT-..DATA, *%9.6f ,( signature-output[O] - az..Aean )/az..sigma )
fprintf( RECURRENT...DATA, 1%9.6f ,( signature...output(l] - widthMean.

/width-~sigma )

for( i = 2; i < 2 + (feature-.bins 2); 1++

fprintf( RECURRENT-.DATA, *%9.6f .Csignature..output Li] -amp...aean

/amp-sigma )

for( i = 0; i < aircraft; i++

if( i == a
fprintf( RECURRENT-DATA, 1%4.lf 1, node..on )

else
fprintf( RECURRE4T-DATA, *%4.lf 1, node-.off )

fprintf C RECURRPNT-IT..ATA, *\n*)

return;

/* end PRZI....NOISY..SIGNATURE

/ * end FORMAT_..RCST /
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Appendix C. RECURRENT Source Code

This appendix contains the RECURRENT source code. It is based on a real-time

recurrent learning algorithm [Williams and Zipser, 1989:270-280]. This computer

program is an updated and expanded version of RECNET [Lindsey, 1991:58-74].

/* recurrent.c *

This program is a real-time recurrent learning algorithm modified for radar
target identification. Input vectors are tagged with target azimuth and elevation
values. Vectors are arranged in sequences, with a fixed sequence length. Each
sequence represents high range resolution radar data measured as the target aspect
angles change.

Each line in the input files have the following format:
{ [elevation tag], (azimuth tag], (azimuth feature value], (target width feature value],
ELV amplitude 1], (LH amplitude 1], (LV amplitude 2], [LH amplitude 2]... (etc, for all
desired range bins describing each signature), [class 1 output node desired value],
[class 2 output node desired value]... (etc, for all target classes) )

This format applies only to the radar target identification problem. The real time
recurrent learning algorithm in this program is written general enough to handle
other problems, such as XOR and function prediction.

Original code written Summer 1991 by Randall L. Lindsey
Updated and modified Fall 1992 by Eric T. Kouba

#include <stdio.h>
#include <math.h>
#include <stdlib.h>

#define bias 1
#define exp.sigmoid-threshold 0.2 /* If the different between desired and actual /
#define tanh.-sigmoidthreshold 0.4 /* output node values is less than threshold, '/

/* then the output node is "right". /

void Exit_Messageo; /* Subroutines from UTILITIES.C */
FILE *OpenFile2(;
FILE *OpenFile3();
int GetInteger );
float UniformRandom(); /* RAN1.C from Numerical recipies in C. '/
int integerseed;
float *Vectorf);
float **Matrixo;
float ***Matrix_3D();

FILE *SETUP; /* Contains net architecture and data file size parameters '/
FILE *DATA; /* Input file for training and tes data */
FILE *WEIGHTS; /* Input and output file for the weights matrix '/
FILE *SIGNATURES; /* Output file, giving node by node and line by line listing of

desired versus actual output values. */
FILE *LENGTH; /* Output file, giving epoch accuracy based on sequence length. '/
FILE *SEOUENCES; I* Output file, classifies each sequence (not very useful). 'I
FILE *EPOCHS; /* Output file, giving means squared error, alpha, percent

right, and percent good for all data during training. 'I
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char *directory; /* Target directory to read inputs and write outputs. *I
char *weights-filename; /* Existing weights file name for restarting the net. */
char comments[80];
int lowerlimit;
int inputs; /* Number of input nodes '/
int outputs; /* Number of output nodes */
int hidden; /* Number of hidden nodes */
int outputlayer; /* Output plus hidden nodes = number of output layer nodes. */
int input-layer; /* Bias plus input plus output plus hidden = input layer. *I
int epochs; /* Training epochs. Set = 0 for a testing run. */
float alpha; /* Initial learning step size *I
int sigmoid_flag; I* Marks type of non-linear function to use. *I
int learn-flag; /* Batch mode flag to show when to do weight updates. */

struct (
int sequences; /* Number of sequences */
int signatures; /* Number of signatures per sequence 'I
int all-data; /* Total number of data vectors */
float *elevationtag; I* Aspect angle tags are not used as features *I
float *azimuthtag;
float **z; /* External and feedback inputs *I
float **d; /* Desired outputs */

data[3]; /* data[0] for training, datall] for check, data[2] for test *1
/* Variable 1c, switches between data files. */

float *right-length; /* Number of sequences that were classified "right, *
float *good-length; /* and *good', for all possible sequences lengths. */

float **w; /* Weight matrix *I
float **deltaw; /* Weight update based on a single training vector */
float **batch-delta..w; /* Batch weight update */
float *5; /* Result of vector*matrix multiply, before sigmoid */
float *y; I* vector*matrix multiply with sigmoid applied */
float *yprime; /* Derivative of node outputs w.r.t. weights */
float ***p-t; /* Previous partial derivatives matrix */
float ***p-t-plusl; /* Current partial derivatives matrix *I
float ***ptemp;
float sum;
float kronecker; /* Delta function */
float *e; /* Desired - actual = error for output nodes */
float J[21; /* Mean squared error per output node */
float *maandesired; /* Average desired node value over a given sequence *
float *maean-output; /* Average actual node output value over a given sequence. '/

float threshold; I* For getting a node *right* *I
int rightoutputs; I* Number of nodes with abs(desired - actual) < threshold *I
int rightsignatures; /* Number of signatures classified right in a sequence */
int right-last-signature; /* flag if the last signature in a sequence was right */
int epoch-rightsignatures; /* Total number of signatures classified within threshold '/
int rightsequencesvote; /* Number of sequences classified *right, by voting all 'I
int right-sequences_mean; I* signatures, by taking the average signature outputs, *I
int rightsequenceslast; /* and by using only the last signature in the sequence. *I

float aax-output; /* Value of the maximum actual output *I
int maxoutputindex; /* Index of the node with max actual output */
float max-desired; /* Value of maximum desired output */
int max-desiredindox; I* Index of the node with max desired output *I
int good-signatures; /* Signature classified good if index of max desired and '/
int goodlast-signature; I' max actual are the same node. 'I
int epoch-good-signatures;
int good-sequawcesevotse
int good-sequences-jnean;
int good.sequencesolast;
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int net_flag; /* Flag for either training or testing the net. */
int a; /P Epochs loop counter */
int b; /* Sequences loop counter *I
int c; /* Data file pointer, 1 for training, 2 for check, 3 for test */
int t; /* Time counter, for signatures per sequence */
int u; /* Alternate time counter, used only for sequence length analysis */
int i, J, k, 1; IP generic counters *I

void ReadSetup( ); /* Subroutines */
void ReadData(;
void AllocateXemory( ;
void InitializeWeights (;
void Read.-Weights ();
void SaveWeights ();
void PrintHeaders ();
void Neto;
void InitializeEpocho);
void InitializeSequence 0;
void InitializeSignature (;
void Propagate 0;
void CoeputeError 0;
void ClassifySignatureo;
void Compute-Output 0;
float ExpSigmoid( float x };
float Tanh-Sigmoid( float x );
void Compute-DeltaWeights ();
void ComputePO;
void Learno;
void PrintSignature );
void Classify-Sequence 0;
void PrintSequence);
void AdjustAlphao;
void PrintSequence_;ength 0;
void Print..Jpoch 0;

/* main program for RC ET ***********************************************

void main( int argc, char *argv[])
{

if( argc In 2 && argc I= 3
ZxitHessage( 'Usage: recurrent <directory> [weightsfilename]"

directory =argv(l]; /* Target directory for input and output files */
if( argc == 3 )

weights-filename z argv[2]; /* Filename for an existing weights matrix. */

SETUP a Open-Jile2( directory, "/train.setup, r );
ReadSetup( c = 0 );
fclose( SETUP );
if( epochs In 0
S'/* Read training data if there are training epochs to run */

DATA = OpenFile2( directory, */train*, r );
ReadData( c a 0 )
fclose( DATA )g

)

SITUP = Opea.File2( directory, /Icheck.setup', r );
ReadSetup( c a 1 )I
fclooe( SETUP );
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DATA = OpenFile2( directory, */check*, r" );
Read-Data( c = 1 );
fclose( DATA );

SETUP = OpenFile2( directory, "/test.setup', "r );
Read-Setup( c = 2 );
fclose( SETUP );

DATA = Open-File2( directory, "/test" ,r )I

Read-Data( C = 2 );
fclose( DATA );

AllocateXemoryo; /* Dynamic allocation for matrix memory */

if( argc == 2 ) /* If no weights filename specified, */
{

InitializeWeightso); /* Generate a random weight matrix. */
WEIGHTS = OpenFile2( directory, =/weights.initial "w );

)
else
{

WEIGHTS = OpenFile3( directory, "/, weights.filename, r );
ReadWeights (;
fclose( WEIGHTS )
WEIGHTS = OpenFile2( directory, "/weights.restart, "w )

I
SaveWeights(); /* Save the starting weights '/
fclose( WEIGHTS );

WEIGHTS = Open_xile2( directory, "/weights.final "w );
EPOCHS z OpenFile2( directory, '/epochs", "w" );
PrintHeaders( net_flag = 0 ); /* Print screen and file headers */

for( a = 0; a < epochs; a++ ) I* Loop over all training epochs */
(

Net( c = 0, net-flag = 0 ); /* Train the net, perform weight updates *1
Net( c = 1, net-flag = 1 )1 /* Check data, no updates *I

)

Save_Weights ();
fclose( WEIGHTS );

/* Training complete, print results */
SIGNATURES = Open_File2( directory, "/signatures.check, w );
SEQUENCES x OpenjFile2 ( directory, "/sequences.check, "w );
LENGTH a Open-File2( directory, "/length.check, w );
Print_Headers( net_flag = 2 );
fprintf( LENGTH, "Icheck );

Net( c a 1, net-flag = 2 ): I* Print results versus check data file *I

fClose( SIGNATURES );
fclose( SEQUENCES );
fclose ( LENGTH );

SIGNATURES = OpenFile2( directory, I/signatures.test*, w );
SBEU ES = OpenFile2( directory, I/sequences.test, "w ;
LENGTH a OpenFile2( directory, */length.test*, "w )
Print_..H (lers net_flag a 2 );
fprintf( LDGTH, "Itest" ):
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Net( c = 2. net-flag = 2 ); /* Print results versus test data file 'I

fclose( SIGNATURES );
fclose( SEQUENCES );
fclose( LEMTH )*
fclose( EPOCHS );

)

/* end AINA

/* Subroutine to read in the net architecture and data file size parameters *

void ReadSetup( int c
(

if(C c == 0 ) I* If training setup file *I
i
inputs = GetInteger( SETUP, lowerlimit = 1 );
outputs = Get_..Integer(C SETUP. lowerjliait = 1 );

hidden = GetInteger( SETUP, lower-limit = 0 );

output-layer = outputs + hidden;
inputlayer = bias + inputs + outputs + hidden;

printf( "%d input, %d output, %d hidden nodes\n\n°, inputs, outputs, hidden );
)
else /* Skip for check and test setup files *I

for( i = 0; i < 3; i++ )
fgets( comments, 80, SETUP );

datatc] .sequences : Get-Integer( SETUP, lower-limit = I ); /* Number of sequences 'I
data[lc .signatures : GetInteger( SETUP, lowerlimit = 2 );

/* Signatures per sequence */
data(c].all-data = data~cl.sequences * data~cl.signatures;

if( c == 0 ) /* If training setup file */
(

epochs = GetInteger( SETUP, lower-limit = 0 );

fscanf( SETUP, %f, &alpha );
fgets( comments, 80, SETUP );
if( alpha <= 0.0 )

ExitMessage( *alpha <= 0.0 in setup file );

siguoid.flag = GetInteger( SETUP, lower-limit : 0 );
if( sigmoidflag == 1 II sigmoid_flag =a 2

threshold = exp.sigmoid-threshold;
else if( sigmoid_flag := 3 )

threshold a tanhsignmoid_threshold;
else

ExitJlessage( *bad output flag in setup file );

learn-flag = GetInteger( SETUP, lower-limit = 0 );
if( learn-flag I= 1 && learn-flag != 2 && learn-flag In 3

Exit_Message( *bad learn flag in setup file* )

return;

/* end EEAD..JETP */
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/* Subroutine to read all vectors in a data file ************* **************

void ReadData( int c
{

data(c].elevation.tag = Vector( 0, data[c].alldata - 1 );
data~c].azimuth-tag = Vector( 0, data(c].alldata - 1 );
data[c].z = Matrix( 0, data[c].all-data - 1, 0, input-layer - 1 ];
datalc].d = Matrix( 0, data(c].alldata - 1, 0, outputs - 1 );

for( i = 0; i < datatc].alldata; i++

fscanf( DATA, "%fl, &data(cl.elevation-tag[il ); /* Aspect angle tags are not */
fscanf( DATA, 1%fl, &data[c].azimuthtag[i] ); /* used as feature values '/

data[c].z[i][0] = 1.0; /* Uniform bias '/
for( J = 0; j < inputs; J++ )

fscanf( DATA, *%f*, &datatc].z[i][j + bias] ); /* Input features */
for( j = 0; j < output-layer; J++ )

data(c].z[i]fj + bias + inputs] = 0.0; /* Initialize all feedback inputs */

for( J = 0; j < outputs; j++ )
fscanf( DATA, "%fl, &data[c].d[i1[j] ); /* Desired outputs */

}

printf( 1%d sequences, %d signatures\n\nl, datalc].sequences, data(c].signatures );

return;
I
/* nd READDATA */

/* Subroutine to dynamically allocate matrix memory

void AllocateMemory ()
{

w = Matrix( 0, outputlayer - 1, 0, inputlayer - 1 ); /* Weights */
delta_.w = matrix( 0, outputlayer - 1, 0, inputlayer - 1 ); /* Weight updates '/
batchdeltaw = Matrix( 0, output-layer - 1, 0, input-layer - 1 ); /* Update batch
s = Vector( 0, output-layer - 1 )/ I* Vector'matrix multiply, before sigmoid Sl
y = Vector( 0, output-layer - 1 ); /* Vector*matrix multiply, after sigmoid '/
y.prime = Vector( 0. output-layer - 1 ); /* Derivative of outputs w.r.t. weights */
Vt= Matrix_3D( 0, outputlayer - 1, 0, inputlayer - 1, 0, output-layer - 1 );

/* Previous partial derivatives matrix */
p.t..plusl = MatrixM.3D( 0, outputlayer - 1, 0, input.layer - 1, 0, output-.layer - 1 );

/* Current partial derivatives matrix
e = Vector( 0, outputs - 1; /* Error = desired - actual */

right.length a Vector( 1, data(l).signatures - 1 ); /* Counters for sequence '/
good.length = Vector( 1, data[l].signatures - 1 ); /' length analysis */

meandesired = Vector( 0, outputs - 1 ); /* Average desired output for a sequence s/
mean-output - Vector( 0, outputs - 1 ); /* Average actual output for a sequence '/

return;
}
/* end ALLOCATL OY */
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/* Subroutine to generate a random weight matrix '** *** *** /

void InitializeWeights ()
(

srand( time( NULL )); /* Use the cheap Unix random number generator */
integer-seed = -rando; /* to seed the high-class Numerical Recipies */
UniformPAndom( &integer-seed ); /* generator 'I
printf( "random weight matrix\n" );

for( i = 0; 1 < output-layer; i++)
{

for( j a 0; j < inputlayer; J++ )
{

w(i] [j = 2 * UniformARandom( &integer.seed ) - 1.0; /* U[-l.+] */
printf( *%f 4. w~i][j] );

i
printf( \n );

I
printf( "\n" );

return;
I
/* end INITIALIZE WEIGHTS */

/* Subroutine to read an existing weight matrix * * * ** * *

void ReadWeights ()
(

printf( *reading weight matrix\n" );

for( i a 0; i < outputlayer; i++
(

for( j = 0; j < input-layer; J++
{

fucanf( WEIGHTS, %f. &w[i] [j] );
printf( 'Of ",w~i][j] )

i
printf( \n );

I
printf( "\n" );

return;
I

1" end READ_WEIGHTS */

/* Subroutine to save a weight matrix to a file *

void SaveWeights ()
(

for( i a 0; i < output.layer; i++ )
{

for( j = 0; j < input-layer; J++
fprintf( WEIGHTS, "%f ". w~iJ] );

fvz.Ifi WEIGHTS, "\n" )

return;
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/* end SAVLWEIGHTS *I

/* Subroutine to print screen and file headers. The exclamation points allow epoch
files to be read directly by "NWYPLOT" for plotting. '********

void PrintHeaders( int net-flag
{

if( net-flag == 0 ) /* Training and check file headers "1
(

fprintf ( EPOCHS, • \t\t\t\tsignatures\t\t\t\tvote\t\t\t\tmean\t\t\t\tlast\n );
fprintf( EPOCHS, * Iepoch\tdistance alpha\tright\t\tgood\t\tright\t\tgood\t\t" )
fprintf( EPOCHS, "right\t\tgood\t\tright\t\tgood\n" )

printf ( "\t\t\t\tsignatures\tvote\t\tmean\t\tlast\n );
printf( "epoch\tdistance alpha\tright\tgood\tright\tgood\t" )3
printf( *right\tgood\tright\tgood\n" )

ifM net-flag == 2 ) /* Test file headers "1
{

fprintf ( SEQUECES, "start\t\t\t\tvote\t\t\tmean\t\t\tlast\n" )
fprintf( SEQUECES, *elevation azimuth\tright good\t );
fprintf( SEQUENCES, "right\t\tgood\t\tright\tgood\n" );

fprintf ( SIGNATURES, "elevation azinuth\tactual\t\t\tdesired\n );
)

return;
I
/* end PRINT.HEADERS */

/* Primary subroutine for real time recurrent learning *******/

void Net( int c, int net-flag
{

Initialize.2pocho; /* Set epoch counters to zero. 'I

for( b = 0; b < data[cl.sequences; b++
{

Initialze._Sequenceo) /* Set sequence counters to zero. 1

for( t = 0; t < data~cl.signatures; t++
{

InitializeSignature(); /* Set signature counters to zero. /
Propagate); 1* Vector*matrix multiply */
ComputeError); /* Difference betwen desired and actual outputs */
Classify_Signature(); I* Classify outputs for the current time step *I

ifM net.flag == 2 ) /* If testing 1

PrintSignature ();

ComputeOutput) ; I* Apply the sigmoid or tanh non-linearity *I

ifW net-flag Z= 0 ) /* If training "1

ComputeDeltaWeights (); /* Compute weight updates for current time step */
Compute-P() ; CP Perform gradient descent, compute new

partial derivatives matrix *I

C-8



if( leurnflag == 1 ) /* Check flag */
Learno; /* Apply weight updates after every time step */

}

ClassifySequence(;)

if( net-flag == 2 ) /* If testing */
(

PrintSequence o;
if(( b + 1 ) % outputs == 0

fprintf( SEQUXCES, *\n );
I

if( net-flag == 0 && learn-flag := 2 ) /* If training, check flag */
Learn(); /* Apply weight updates after every sequence */

I

if( net-flag == 0 ) /* If training 'I
{

if( learn-flag == 3 ) /* Check flag 'I
Learno; /* Apply weight updates at end of epoch */

AdjustAlpha(); /* Decrease learning step size, if required */

fprintf( EPOCHS, *!%4d:\t', a + 1 );
printf( %4d:\t*, a + 1 );

else if( net-flag == 1 ) /* If running through check data during training e/
(

fprintf( EPOCHS, "!check:\n%d\t1, a + 1 );
printf( *check:\t );

I
else if( net-flag == 2 && c == 1 ) /* If running through check data during testing *1

PrintSequenceLength) ; /* Print net accuracy versus sequence length */

fprintf ( EPOCHS, "check:\t );
printf( ocheck:\t );

}
else /* If running through test data */

Print$Sequence_.Length(0; /* Print net accuracy versus sequence length /

fprintf( EPOCHS, "Itest:\t" );
printf( *test:\t );

PrintEpoch(); /* Print cumulative epoch results e/

return;
I
/I end NET 'I

/* Subroutine to zero epoch counters *********e********eeee********e**/

void initializeXpoch()

epoch.rightsignatures = 0;
right_sequences_vote a 0;
rightLsequences-jwan a 0:
right-sequences-last a 0;
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epoch-goodsignatures = 0:
good-sequences-vote = 0;
good-sequences-mean = 0;
good-sequences-last = 0;

J[1] = 0.0; /* Mean square error for current epochs 'I
for( i = 0; i < output-layer; i++

for( j = 0; j < input-layer; j++ )
batch-delta-w[i] (J] = 0.0; /* Initialize batch updates 'I

for( t = 1; t < data[l].signatures; t++
{

right-length~t] : 0.0;
good-length(t] = 0.0;

I

return;
I
/* end INITIALIZEEPOCHS */

/* Subroutine to zero sequence counters ********* ***** /

void Initialize._Sequence ()
( right..signatures = 0;

rightlastsignature = 0;
good-signatures = 0;
goodjlast-signature = 0;

for( i = 0; 1 < outputs; i++
{

mean-desired(i] 0.0;
mean-outputfij = 0.0;

I

for( i = 0; 1 < output-layer; i++
(

y[i] = 0.0; /* Actual outputs */
y_.prime(i] = 0.0; /* Derivative of outputs w.r.t weights */
for( j = 0; j < input-layer; j++ )

for( k = 0; k < outputlayer; k+÷
p.t[i](j] [k] = p.t.plusl[i][j][k] : 0.0; /* Partial derivatives matricies */

I

return;
I
/* end INITIALIZESEQUENCE *1

/* Subroutine to zero signature counters *

void Initialize_Signature C)

right_outputs = 0;
ma•,output m -99.0;
aUa..outputindex a -1;

max._deuired a -99.0;
sax-desiredIndex = -1;
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for( i = 0; i < outputs; i++
6OM1 = 0.0; /* Error */

for( i = 0; 1 < output-layer; i++
{

s[i] = 0.0; /* Node activation 0/

for( J = 0; j < inputlayer; j++ )
delta.w[i](j] = 0.0; /* Initialize weight updates (not batch) 0/

I

return;
I
/* end INITIALIZESIGNATURE 0/

/* Subroutine to compute input vector * weight matrix multiply for current time step **

void Propagateo)

for( i = 0; 1 < output-layer; i++
data[c].z[b * data(c].signatures + t][i + bias + inputs] = y[i];

for( i = 0; i < outputlayer; i++ )
for( J = 0; j < input-layer; J++

stil += w[i][J] * data[c].z[b * data[c].signatures + t][j];

return;
I

/* end PROPAGATE */

/* Subroutine to compute desired - actual output node values ***0*0******0000000/

void Compute_Error ()
{

ifM t == 0 ) /* No error computations for first time step */
return;

for( 1 = 0; 1 < outputs; i++
(

eel] = data[cl.d[b * data[c].signatures + ti[l] - yi];
J[11 += 0.5 * etil * eli]; It Sum up the mean squared error over all 0/

/* sequences and signatures */

return;
}
1' end CONPUT-JBROR */

/* Subroutine to classify the node outputs for the current time step **'*************/

void ClassifySignature()
(

if( t as 0
return;

for( i a 0; i < outputs; i++
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if( fabs( data[c].d[b * data(c].signatures + t] i] - y[i] ) <= threshold
rightoutputss++;

if( rightoutputs == outputs ) /* If all actual and desired outputs are close, */
(

right.signatures++; /* Increment the "right* counters. */
epoch-right_signatures++;
if( t == data[c].signatures - I

rightlast-signature = 1;
)

for( i = 0; 1 < outputs; i++e)
{

if( data(cl.d[b * data[cl.signatures + t] i] > max-desired
{

max-desired = data~cl.d[b * data~c].signatures + t][i];
max-desiredindex = i; /* Find index of max desired output node */

I
if( y[i] > max-output
{

max-output = y[i);
maxoutputindex = i; /* Find index of max actual output node */

I
I
if( max..desired-index == maxoutput-index

/* If indicies match, then max pick worked *1
good-signatures÷÷; /* Increment 'good" counters. *I
epoch..good-signatures++;
if( t a= data[cl.signatures - 1

goodlast-signature = 1;
I

for( i z 0; i < outputs; i++
( /* Sum up outputs for each signature in a sequence *I

mean..desired(il] += data~c].d[b * data[cc.signatures + t] i] /
( data[c].signatures -1 );

mean-output[i] ÷= y[i] / ( data[cl.signatures - 1 ';
I

return;
)
I* end CLASSIFYSIGNATURE "1

/* Subroutine to print the node outputs for the current time step, during testing ****/

void PrintSignature ()
{

fprintf( SIGNATURES, %6.1f , datafc].elevation-tag[b * datatc].signatures + t] );
fprintf( SIGNATURES, "%6.lf , data[c].azimuth-tag[b * data(cl.signatures t] );
for( i a 0; i < outputs; i+÷ )

fprintf( SIGNATURES, -%9.6f , y[i] ); 1" Actual outputs '1
for( i = 0; i < outputs; i÷+ ) /* and desired outputs *1

fprintf( SIGNATURES, 1%5.2f , data[c].d(b * data~c].signatures + t][i] );

if( t == 0 )
fprintf( SIGNATURES, 'start );

else

if( rightoutputs -i outputs
(

fprintf C SIGNATURES, '

right.lengthitJ += 1.0;
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)

else
fprintf ( SIGNATURES, *wrong ;

if( maxdesiredindex == maxoutputindex
(

fprintf( SIGNATURES, ;
good-length~t] += 1.0;

else
fprintf( SIGNATURES, *bad

I

fprintf( SIGNATURES, "\n );

return;
)
/* end PRINT-SIGNATURE */

/* Subroutine to apply the non-linearity function *******************************/

void ComputeOutput ()
{

if( sigmoidflag == 1 ) /* Use a combination of linear outputs and */
{ /* sigmoid hidden nodes. */

for( i = 0; i < outputs; i++
y[i] = sBiU;

for( i = 0; i < hidden; i++
y[i + outputs] = ExpSigmoid( s~i + outputs] );

I

else if( sigmoid_flag == 2 ) /* Use standard sigmoid */
for( i = 0; i < outputlayer; i++ )

yfi] = ExpSigmoid( sti] );

else /* Use tanh function */
for( i = 0; i < output-layer; i++ )

y~i) = Tanh-Sigmoid( sli] );

return;
]
/* end COMPUTEOUTPUT */

1* Subroutine for the sigmoid function ********************************

float ExpSigmoid( float x
{

static float maximuumvalue = 50.0;

if( x > maximumvalue
return 1.0;

else if ( x < -maximum-value
return 0.0;

else
return 1.0 / ( 1.0 + exp( -x ));

I

1* end ECP_SIQWOID */
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/* Subroutine for the tanh function *

float Tanh-Sigmoid( float x
{

static float maximumvalue = 25.0;

if( x > maximum-value
return 1.0;

else if( x < -maximum-value
return -1.0;

else
return tanh( x );

/* end TANH_SIGMOID */

/* Subroutine to compute weight updates for the current time step *

void Compute_.Delta_Weights ()

for( i = 0; i < outputlayer; i++
for( j = 0; J < input-layer; j++

for( k = 0; k < outputs; k++
deltaw[i][J] += alpha * elk] * pt[i][jj[k];

batchdelta_wti]E[j] += deltaw[i][j]; /* Sum into batch update '/
/* Apply updates after each time step, sequence, or epoch *1

return;

/* end COMPUTE_DELTA_WEIGHTS * /

/* Subroutine to compute the new partial derivatives matrix * * ****/

void ComputeP()

if( sigmoid_flag == 1 ) /* Linear outputs, sigmoid hidden nodes '/

fcr( i = 0; i < outputs; i++
y..prime(i] = 1.0;

for( i = 0; i < hidden; i++
yprime~i + outputs] = y[i + outputs] * ( 1.0 - y[1i outputs] );

else if( sigmoid_flag == 2 /* Sigmoid for entire output layer '1
for( i = 0; i < outputlayer; i++ )

y.prine~i] = y[i] * ( 1.0 -y[i] );

else /* Tanh function for output layer I
for( i w 0; 1 < output-layer; i+÷ )

y-priae(i] M 1.0 - ( yUi] * y~i] );

for( i w 0; i < output-layer; i+.
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for( j = 0; j < input-layer; j++
for( k = 0; k < output-layer; k++
{

kronecker = 0.0;
if ( i ==k )

kronecker = 1.0;
sum = 0.0;

for( 1 = 0; 1 < outputlayer; 1++
sum += w(k][l + bias + inputs] * p)t~i] j] [l];

p-t_-plusl(i][j][k] = y-prime[k] *
(sum + kronecker * data[c].z[b * data[c].signatures + t][j] );

} /* Compute new P matrix based on old P matrix */

p.temp =pt;
p pt = p.t.plusl; /* Swap pointers, now PT is the current P matrix */
p-t-plusl = p-temp;

retu ,;
I
I* end COMPUTEP *I

/* Subroutine to apply the weight updates and reset batch mode update * * * /

void Learn()
{

for( i = 0; i < output-layer; i++
for( j = 0; j < inputlayer; j++
C

w(i](j] += batch-delta_w[i][j];
batchdelta_wfi][(j] = 0.0;

)

return;
I
I* end LA I

/* Subroutine to classify a sequence based on time step outputs **********

void Classify-Sequence ()
(

if( right-signatures >a data c] .signatures 1 2
rightsequencesvote++; /* Majority vote scheme

if( good&signatures >= data [c].signatures / 2
good-sequencens-vote++;

InitializeSignature(); I* Reset signature stat. (dual use variables) *I

for( i = 0; L < outputs; i++ )
if( labst maeandesiredfi] - mean-output[il] ) < threshold

rightoutputs++;
iM( righLtoutputs so outputs

right..sequences.psean++; /* Average output per tim step so

for( i a 0; 1 < outputs; i++

if( meandsesired(il > max-desired
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{

maxdesired = meandesired(i];
maxdesired_index = i;

I

if( mean-output[i] > max-output
{

max-output = mean-output [i];
max:_outputindex = i;

I
I
'f( max__desiredindex == maxoutputindex

goodsequences-mean++; /* Average output per time step */

if( right_last-signature == 1
right-sequences-last++; /* Only look at last time step *I

if( good_lastsignature == 1
good-sequences.last++;

return;
)
/* end CLASSIFY-SEQUENCE */

/* Subroutine to print sequence results (not very useful) ******************/

void PrintSequence C)
{

fprintf( SIGNATURES, *\n ); /* Print aspect angle tags */
fprintf( SEQUENCES, "%6.lf ", data[c].elevation-tag[b * data(c].signatures] );
fprintf( SEQUENCES, "%6.lf\t\tl, data(c].azimuthtag[b * data[c].signatures] );

if( right_signatures >= data[c].signatures / 2 ) /* voting records '/
fprintf( SEQUENCES, "%2d , right-signatures );

else
fprintf( SEQUENCES, "%2d wrong , right-signatures );

if( goodsignatures >= data[c].signatures / 2 ) /* Voting records *I
fprintf( SEQUENCES, "%2d \t, good..signatures };

else
fprintf( SEQUENCES, *%2d bad\t'. good.signatures );

if( right-outputs == outputs ) /* Average time step response */
fprintf( SEQUENCES, "%2d , right-outputs );

else
fprintf( SEQUENCES, 1%2d wrong ", right-outputs );

if( max..desired-index := maxoutput-index
fprintf( SEQUENCES, * \t\t" );

else I* Average time step response /
fprintf( SEQUENCES, ° bad\t\t );

if( right_lastsignature =: 1 ) /* Last time step only '/
fprintf( SEQUENCES, "\t" );

else
fprintf( SEQUENCES, "wrong\t );

if( good-last-signature an 1 ) /* Last time step only */
fprintf( SEQUENCES, "\t" );

else
fprintf( SEQUENCES, "bad\t );

fprintf( suQUZNCuS, *\nl );
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return;
I

/* end PRINT-SEQUENCE */

/* Subroutine to decrease learning step size, if required ** *** * **

void AdjustAlpha()
{

if( ( J(l] / data[0].all-data ) < 0.0005 ) /* If error less than an arbitrary */
{ /* amount, exit training */

printf( "exit after epoch %d\n, a + 1 )
a = epochs; /* (but print results first) */

I

if( a < 5 II J[l < J[0] ) /* For first 5 epochs or while error is decreasing, *1
J[0] = Jil1; /* do nothing. */

else if( J[1] < 1.01 * J[O] ) /* If error increases by less than 1%, remember the *1
/* previous lowest mean squared error value in case */

else /* error increases again. */
{

alpha *= 0.5; /* If error increases by more than 1%, decrease alpha */
J[0] = Jil];

}

return;
)
/* end ADJUST-ALPHA */

/* Subroutine to print net accuracy as sequence length varies.
The output file is formatted for reading and plotting by NXYPLOT *

void PrintSequence-Length ()
L

fprintf( LENGTH, \n!sig\t right\t good\nl );
printf ( "\nsig\t right\t good\n° );

for( u = 1; u < data[l1.signatures; u++)
I* bug: limited to >check file< signatures per sequence "1

fprintf( LENGTH, "%2d\t., u + 1 );
fprintf( LENGTH, "%6d\t-, (int)right.length(u]),
fprintf( LETH, "%4.lf%%\tl, 100.0 * rightlength(u) / (float)data~c].sequences);
fprintf( LENGTH, "%6d\t*, (int)good-length(u) );
fprintf( LENGTH, "%4.lf%%\nl, 100.0 * goodlength(u) / (float)data(c].sequences);

printf( "%2d\t., u + 1 );
printf( "%6d\tl, (int)right_length(u))
printf( *(%4.lf%%)\t., 100.0 * right-length[u] / (float)data(c].sequences);
printf( "%6d\tl, (int)good..length(u) );
printf( "(%4.lf%%)\n*, 100.0 * good-length(u) / (float)data[c).sequences);

fprintf( LENGTH, "\n" )
printf( \n );

return;

/* and PRINT QUBfhCLZMbTH */
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/* Subroutine to print composite results for an entire epoch (to file and screen)

void Print...Epoch()
/* Mean squared error per output node, and learning step size ~

fprintf( EPOCHS, '%9.6f %8.6f\t*, J[1] / data~c].all-data, alpha );
/* Straight count of signatures *

fprintf( EPOCHS, 1%4d *. epoch-.right..signatures );
fprintf C EPOCHS, '%4 .lf%%\t., (float)epoch-.right-signatures/

(float)data~cj .a11..data*l00.0 );
fprintf( EPOCHS, "%4d *, epoch..good~signatures )
fprintf( EPOCHS, 1%4.lf%%\tl, (float)epoch..good-signatures/

(float)data(clball-data*l00.0 );
/* Voting scheme results *

fprintf( EPOCHS, *%3d *, right..sequences~vote );
fprintf( EPOCHS, '%4.lft%\t*, Cf loat)right...sequences..voteI

(float)data~c] .sequences*100.0 );
fprintf ( EPOCHS, 1%3d ", good..sequences...vote )
fprintf( EPOCHS, *%4.lf%%\tl, (float)good-sequences-vote/

(float)data(cl .sequences*100.0 );
/* Average response results *

fprintf( EPOCHS, 1%3d 1, right..sequences~jsean );
fprintf C EPOCHS, *%4.lftt\t*, (float) right-.sequences-juean/

(float)data~c] .sequences*l0.O );
fprintf C EPOCHS, *%3d 1, good-sequences.Jnean )
fprintf( EPOCHS, "%4.lft%\t*, (float)good-sequences-jnean/

(float)datalc] .sequences*l0O.0 );
/* Last time step results *

fprintf( EPOCHS, '%3d 1, right-sequences-.last );
fprintf C EPOCHS, 1%4.lft%\tl, (float)right-sequences~last/

(float)data[cJ .sequeraces*100.O ):
fprintf C EPOCHS, *%3d *, good-sequences-.last )
fprintf C EPOCHS, '%4.lf%%\t*, (float)good..sequencesjlast/

Cfloat)data~c] .sequences*100.0 )

fprintf C EPOCHS, *\nl );

printf( C 9.6f %8.6f\t*, J~l] / data[c].all-data. alpha )

printfC 1%4.lf%%\tl, (float)epoch-.right..signatures / (float)data(c].all...data * 100.0 )
printfC 1%4.1f%%\t', (float)epoch..good-signatures / float)data~c].a11..data *100.0 )

printf( C%4.lf%%\tl, Cf loat)right..sequences~vote / f loat)datatc].sequerices '100.0 )

printf( "%4.lf%%\t*, (float)good~sequences-vote / Cfloat)data~c].sequences *100.0 )

printf( "%4.lf%%\t*, (float)right...sequences-.mean / Cfloat)datatcl.sequences *100.0 )

printf( '%4.1f%%\t*. (float)goo4..sequences--ean / (float)data~cl.sequences *100.0 )

printf( *%4.lf%%\t%, Cf loat)right-.sequences-last / (float~datafcl.sequences 100.0 )
printf( C%4.lftt\t*, (float)good&.sequences~last / Cfloat)data~cl.sequences 100.0 )

priritf( *\n*)

return;

I' end PRINT....POCH '

/* end RECUJRRENT *
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Appendix D. UTILITIES Source Code

This appendix contains the UTILITIES source code. These subroutines are used

by function calls from FORMATRCST and RECURRENT.

/* utilities.c **

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

void ExitJessage( char *message

printf( =%s\nexit\n", message );
exit( 1 );

)

FILE *Open_File2( char *pre, char *extl, char *mode
(

char *newJname;
FILE *NEW-FILE;

new-name = malloc( strlen( pre ) + strlen( extl ) + 1 );
strcpy( new-name, pre );
strcat( new-name, extl ];

NEW-FILE = fopen( new-iname, mode );
if( NEW-FILE == NULL

printf( *Cannot find file: %s\nexit\nl, new-name );
exit( 1 );

printf( "%s\ts\n*, mode, new.name );
return NEW-FILE;

FILE *OpenFile3( char *pre, char *extl, char *ext2, char *mode

char *new-name;
FILE *NEW-FILE;

new-naae z malloc( strlen( pre ) + strlen( extl ) + strlen(ext2 ) + 1 );
strcpy( newnalae, pre );
strcat( newAname, extl );
strcat( newnae ext2 )

NMMILE = fopen( new-name, mode );
if( NEW-FILE as NULL
(

printf( 'Cannot find file: %s\nexit\n", new.nane );
exit( 1 )s
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)

printf( "%s\ts\n-, mode, new-name );
return NEW-FILE;

FILE *OpenFile4( char *pre, char *extl, char *ext2, char *ext3, char *mode
{

char *new_.name;
FILE *NELFILE;

new-name = malloc( strlen( pre ) + strlen( extl ) + strlen( ext2 )
+ strlen( ext3 ) + 1 );

strcpy( new..name, pre );
strcat( new-name, extl );
strcat( new..name, ext2 );
strcat( newAname, ext3 );

NEW-FILE = fopen( new_.name, mode );
if( NEWFILE == NULL

printf( 'Cannot find file: %s\nexit\n". new-name );
exit( 1 );

)

printf( "%s\ts\nr, mode, new-name );
return NEW_FILE;

I

int GetInteger( FILE *TEMP, int lowerllimit

int variable;
char commentsE100];

fscanf( TEMP, "%d', &variable );
fgets( comments, 100, TEMP );
if( variable < lowerjimit

Exit_Message( *Integer error in setup file );

return variable;
I

/* UNIFORIRANDOK is the RAN1 routine from Numerical Recipies in C. */

#define Ml 259200
#define IAl 7141
#define It1 54773
#define 311 C 1.0 / Mi
#define K2 134456
Odefine IA2 8121

sdefine IC2 28411
*define R32 ( 1.0 / M2
Mefine 13 243000
#define IA3 4561
Mdefine IC3 51349

extern float Unifor-Aando.( int *integer.seed
(



static int iff = 0;
static long ix1;
static long ix2;
static long ix3;
static int j;
static float r(981;
float tamp;

if ( *integer-seed < 0 11 iff == 0

iff = 1;
ix1 = ( IC1 - ( *integerseed )) % M1;
ixl = ( IAl * ixl + IM ] % Ml;
ix2 = ix1 % 32;
ixl a ( IAl * ix1 + It1 ) % M1;
ix3 = ixi % M3;
for( j = 1; j <= 97; j++
(

ixl = ( IAl * ixl + ICM ) % 341;
ix2 = ( IA2 * ix2 + IC2 M % M2;
r~j] = ( ixl + ix2 * RM2 ) * R3I;

)
*integerseed = 1;

)
ixl = ( IAl * ixl + IM ) % Ml;
ix2 = ( IA2 * ix2 + IC2 ) % M2;
ix3 = ( IA3 * ix3 + IC3 ) % M3;
j = 1 + (( 97 * ix3 ) / M3 )
if( j > 97 11 j < 1 )

Exit-Message( 'Uniform-Random: positive seed value );
tamp = r(J);
r[ji = ( ix1 + ix2 * RM2 3 * Rm1;

return temp;
I

#undef Ml
#undef IAl
#undef IM
#undef 3341
#undef M2
#undef IA2
#undef IC2
#undef 332
#undef M3
tundof IA3
#undef IC3

/* GAUSSMI-ARANDOM is the GASRAN routine from Numerical Recipies in C. */

extern float GaussiLanRandcm( int *integer.seed
C

static int iset - 0;
static float goet;
float fac;
float r;
float vl;
float v2;
float UniformA.andon();

if( iset as 0 )
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do
{

v2 = 2.0 * Uniform-Yandom( integer-seed ) - 1.0;
v2 =2.0 * Uniform...Randoa( integer...seed ) - 1.0;
r = v1 * v1 + v2 * v2;

}
while( r >= 1.0 II r == 0.0 );

fac = sqrt( -2.0 * log( r ) / r );
goet = v * fac;
iset = 1;
return v2 * fac;

I
else
{

iset = 0;
return gset;

)

int *Integer.Vector( int nl, int nh) I* from Numerical Recipies in C. *1
(

int *v;

v = ( int * malloc( (unsigned)( nh - nl + 1 ) * sizeof( int ));
if ( )v

Exit_Message( "IntegerVector: allocation failure );
v -= nl;

return v;
I

float *Vector( int nl, int nh ) /* from Numerical Recipies in C. *I
(

float *v;

v = ( float * )malloc( (unsigned)( nh - nl + I ) * sizeof( float M);
if ( )v

Exitmessage( "Vector: allocation failure );
V -= nil;

return v;
I

int **Integer_Matrix( int nrl, int nrh, int ncl, int nch
I* from Numerical Recipies in C. */

(
int i5
int **a;

a = ( mnt ** ) malloc( (unsigned)( nrh - nrl + 1 ) * uizeof( int* ));
if ( in )

gxit_yJssage( lintegerXatrix: allocation failure 1"
• -M url;

for( i nrl; s <=c nnh; I÷
(

•(il - ( mt * ) hnalloc( (unsigned) ( nch - ncl + 1 ) * gizeof( int ))
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if ( !re[il
Exitmessage( *IntegerMatrix: allocation failure 2 );

m[i] -= ncl;

return m;

float **Katrix( int nrl0 int nrh, int ncl, int nch
/* from Numerical Recipies in C. '/

int i;
float **m;

m = ( float * ) malloc( (unsigned)( nrh - nrl + 1 ) * sizeof( float* I);
if ( a)

ExitMessage( *Matrix: allocation failure 1 );
m - nrl;

for( i = nrl; i <= nrh; i++
(

mtil = ( float * ) malloc( (unsigned)( nch - ncl + 1 * sizeof( float ));
if ( !m[i] )

ExitJMessage( 'Matrix: allocation failure 2 );
m~i] -= nclz

)

return m;
)

float ***Matrix_3D( int nrl, int nrh, int ncl, int nch, int ndl, int ndh
/* from the RECNET computer code */

(
int i° j;
float ***m;

m = (float ***) malloc( (unsigned)( nrh - nrl + 1 ) * sizeof( float** );
if ( !m )

BxitMessage( *Matrix_3D: allocation failure 1 );
a -z nrl;

for( i = nrl; i <= nrh; i++
(

m[i] = (float **) malloc( (unsigned)( nch - ncl + 1 1 sizeof( float* );
if ( Imlil )

ExitMesuage( "Matrix_3D: allocation failure 2 );
m[i] -z ncl;

for( j = ncl; j <= nch; J++

m(i][J] = (float *) malloc( ( unsigned )( ndh - ndl + 1 ] * sizeof( float 1);
if ( !ii][J] )

ExitMessage( *Matrix_3D: allocation failure 3 );
aCi] [] -- ndl;

return a;
I

/* end UTIta7ZT 'I
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